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Phase Noise Equivalent Baseband Channel

ak rENCODER MOD

e jθk nk

rk
bk ck

Mathematical Notation

rk = cke
jθk + nk , nk ∼ CN (0, σ2)

θk = θk−1 +∆k , ∆k ∼ N (0, σ2
∆)
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Example - Effect on Demodulating QPSK

rk = cke
jθk + nk
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Previous Mitigation Approaches

Method Pros Cons

DA/NDA PLL Low Complexity Low Phase noise

Noncoherent No pilots Intrinsic Loss

Model based Performs very well Model dependant

Special codes Good Performance Not standard de-
sign

LDPC with differ-
ential encoding

No pilots Long convergence
time, not better
than model based
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Thesis Goal

Using Strong FEC

LDPC and Turbo codes work well in low SNR regions

Standard codes and no need for special design

MAP detection of code symbols is the optimal scheme in BER
sense

Perform joint detection and estimation

The phase tracker and code decoder will exchange information
iteratively

Objective

Design a low complexity algorithm for providing LLRs to
the LDPC/Turbo decoder
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Joint Detection & Estimation

MAP Detection

ĉk = arg max
ck

Pr(ck |r)

ĉk = arg max
ck

∑

c/ck ,θ

p(c,θ|r)

Factorization

p(c,θ|r) ∝ p(θ0)
K−1∏

k=1

p(θk |θk−1)︸ ︷︷ ︸
p∆(θk−θk−1)

K−1∏

k=0

p(rk |θk , ck)︸ ︷︷ ︸
fk(ck ,θk)

1{cK−1
0 ∈ C}
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Factor Graph

Barbieri, Colavolpe and Caire (2006)
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Sum and Product Algorithm

Forward & Backward Messages

pd (θk) =
∑M−1

m=0 Pd (ck = e j
2πm
M )fk(ck , θk)

pf (θk) =
∫ 2π
0 pf (θk−1)pd (θk−1)p∆(θk − θk−1)dθk−1

pb(θk) =
∫ 2π
0 pb(θk+1)pd (θk+1)p∆(θk+1 − θk)dθk+1

LLR

Pu(ck) =
∫ 2π
0 pf (θk)pb(θk)fk(ck , θk)dθk

Problem

Implementation problem - Phase messages are continuous!

One solution - Quantize the phase and perform approximated
SPA
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Sum and Product Algorithm

High accuracy requires high
complexity
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Model Based Approximations

Canonical Model

SPA messages are approximated using a family of distributions
(finite parameters)

Much lower computational complexity than quantization

Single Tikhonov

Barbieri, Colavolpe and Caire (2006) used a Single Tikhonov
distribution for all SPA phase messages

pf (θk) =
eRe[z

k,f e−jθk ]

2πI0(|zk,f |)
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Single Tikhonov Canonical Model - Problem

Canonical model is not consistent!

pf (θk+1)︸ ︷︷ ︸
Tikhonov Mixture

=

∫ 2π

0
pf (θk)︸ ︷︷ ︸

Tikhonov distribution

pd (θk)︸ ︷︷ ︸
Tikhonov Mixture

p∆(θk+1 − θk)︸ ︷︷ ︸
Gaussian

dθk
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Single Tikhonov Canonical Model - Problem

Barbieri, Colavolpe and Caire (2006) proposed to find the
closest Gaussian to pd (θk)
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Not Good Enough!

Problem

In absence of reliable prior information on the code, pd (θk) is
multi modal

Single Tikhonov canonical models are not suitable for
the first iteration in strong phase noise.
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Motivation for Mixtures - Phase Trajectories

Looking at DP, we can see the multi modal dynamics of the phase
posterior
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Canonical Model - Tikhonov Mixture

pf (θk) =

Nf∑

i=1

αf
i

eRe[z
k,f
i

e−jθk ]

2πI0(|z
k,f
i |)
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Problem

Mixture order grows exponentially!

pf (θk+1)︸ ︷︷ ︸
Bigger Tikhonov Mixture

=

∫ 2π

0
pf (θk)︸ ︷︷ ︸

Tikhonov Mixture

pd (θk)︸ ︷︷ ︸
Tikhonov Mixture

p∆(θk+1 − θk)︸ ︷︷ ︸
Gaussian

dθk
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Problem Formulation

Classical Mixture Reduction

Given a Tikhonov mixture,

f (θ) =

N∑

i=1

αi fi(θ)

Find a Tikhonov mixture with M < N

g(θ) =
M∑

j=1

βjgj (θ)

Which minimizes some distortion criterion,

D(f (θ)||g(θ))
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Mixture Reduction Algorithms

Mixture Similarity Metric

Kullback Leibler divergence (KLD) is more natural for this
setting than Integral square error (ISE)

Known mixture reduction algorithms such as: Salmond
(1990),Williams & Maybeck (2003) and Runnalls (2006) don’t
work well

Why do these algorithms fail?

Fixed mixture order and clustering errors limit the performance,

Small order will not be accurate enough and undergo cycle
slips and create error floor

Large order is too computationally demanding
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New Approach - Adaptive Mixture Order

Introduction

Typically, the number of phase trajectories is small → small
mixture

It is important to be very accurate in the mixture reduction in
order not to propagate errors → large mixture

Mixture reduction is performed for each symbol → adaptive
mixture order
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New Approach - Adaptive Mixture Order

Objective

Given a Tikhonov mixture,

f (θ) =

N∑

i=1

αi fi(θ)

Find the Tikhonov mixture g(θ) with a small number of
components M < N

g(θ) =
M∑

j=1

βjgj (θ)

which satisfy,
DKL(f (θ)||g(θ)) ≤ ǫ
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Unlimited Order Mixture Reduction Algorithm

j ← 1
while |f (θ)| > 0 do

lead ← argmax{α}
for i = 1→ |f (θ)| do

if DKL(fi (θ)||flead (θ)) ≤ ǫ then
idx ← [idx , i ]

end if
end for
βj ←

∑
i∈idx αi

gj (θ)← CMVM(
∑

i∈idx
αi

βj
fi (θ))

f (θ)← f (θ)−
∑

i∈idx αi fi(θ)
j ← j + 1

end while

Shachar Shayovitz MSc. Presentation
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Mixture Reduction Algorithm

Suppose we need to reduce the dimensions of the following
message pf (θk+1)
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Mixture Reduction Algorithm

Choose the most probable mixture component and name it
flead (θk+1),
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Mixture Reduction Algorithm

Find all other mixture components fi(θk+1) for which
DKL(fi (θk+1)||flead (θk+1)) ≤ ǫ,
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CMVM - Circular Mean and Variance Matching

Theorem (Shayovitz & Raphaeli 2012)

Given a circular distribution f (θ), the parameters of the Tikhonov

distribution g(θ) which satisfy,

[µ̂, σ̂2] = argmin
µ,σ2

DKL(f (θ)||g(θ))

Are given by:

µ̂ = ∠Ef (e
jθ)

σ̂2 = Ef (1− cos (θ − µ̂))
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Mixture Reduction Algorithm

Cluster all the chosen mixture components using CMVM and get
the first reduced mixture component g1(θk+1).
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Mixture Reduction Algorithm

Eliminate the clustered components and iterate until there are no
original mixture components left...
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Accuracy Theorem

Theorem (Shayovitz & Raphaeli 2012)

(Mixture Reduction Accuracy): Let f (θ) be a Tikhonov

mixture of order L and ǫ be a real positive number.

Then, applying the mixture reduction algorithm to f (θ) using ǫ,

produces a Tikhonov mixture g(θ), of order N < L which satisfies,

DKL(f (θ)||g(θ)) ≤ ǫ

Implications

Mixture reduction accuracy is mathematically upper bounded

Allows to track all significant trajectories and produce
accurate LLR

Shown via simulations to have low
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Limited Complexity

What happens if the mixture Order is limited to 1?
We only choose one trajectory!
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Limited Complexity

Problem

Can track only a limited number of phase trajectories

If the number of significant phase trajectories is larger than
the maximum number of mixture components allowed, then
we might miss the correct trajectory

We can never regain tracking, not even using pilots!

This event is analogous to phase slip in PLL

Shachar Shayovitz MSc. Presentation
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Limited Complexity
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Limited Complexity

Limited Mixture Order

When using the previous algorithm, tracking a limited number of
trajectories ⇒ Some components will be ignored
Their cumulative probability is the probability of a phase slip

Online Phase Slip Estimation

We add an additional variable φf
k (for backward recursions φb

k) ,
which online approximates the probability that the tracked
trajectories include the correct one.

φf
0 = 1

φf
k ← (

∑

j

βj )φ
f
k−1

Shachar Shayovitz MSc. Presentation
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Recovering From Cycle Slips

Problem

In case of a cycle slip, the phase message estimator based on the
tracked trajectories is useless

Using Pilots

Assuming pilots are present

One may estimate the message using only the pilot symbol,
pd (θk).

But if a cycle slip has not occurred, then estimating the phase
message based only on the pilot symbol might damage our
tracking.

Shachar Shayovitz MSc. Presentation
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Recovering From Cycle Slips

Possible Solution

Once a pilot symbol arrives, we will average the following
estimators according to φf

k ,

qf (θk) = φf
k pf (θk)︸ ︷︷ ︸

Tracked Trajectories

+(1− φf
k)

1

2π

If a cycle slip has occurred and φf
k is low, then the pilot will,

in high probability, correct the tracking.
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Reminder
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Recovering From Cycle Slips

For φf
k = 0.6
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Computation of Pu(ck)

Pu(ck)

Final step in the approximated SPA

LLR of a code symbol based on the channel part of the factor
graph.

Sent to the LDPC decoder and are crucial for the decoding of
the LDPC.

Modified Computation

We use qf (θk) = φf
kpf (θk) + (1− φf

k)
1
2π

Forward-Backward scheme coupled with the mixtures based
on cycle slip averaging, helps remove wrong trajectories
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Complexity Reductions

We use several complexity reduction procedures

Low complexity approximation of the KLD of two Tikhonov
distributions

All probabilities are in log domain (reduce muls)

We use the log-sum approximation using maximum operation
with LUT correction

For small ǫ, we can use the leading component instead of
using CMVM (tradeoff with mixture order). This saves a lot
of computation time.
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Complexity

Computational load per code symbol per iteration for MPSK
constellations

DP BARB Limited Order

MULS 4Q2M2+2M2Q+
6MQ +M

7M +
5

4Mγ(i)2 +
2M(γ(i) + 1)

LUT QM 3M 3Mγ(i)2 −
γ(i)(2M − 1)

γ(i) is the mean mixture order for iteration i, M is the
constellation order, L is the number of quantization levels and Q is
a parameter for the DP algorithm
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Numerical Results

Monte Carlo simulation results for the proposed algorithms with
varying mixture order and level of complexity, algorithm proposed
by Barbieri et al (2006) and algorithm based on phase quantization
(DP).

Length 4608 LDPC code with rate 0.889.

MPSK constellation.

Phase noise model with varying σ∆ [rads/symbol].

A single pilot was inserted every 1
pilotfrequency

symbols.

The DP algorithm was simulated using 16 quantization levels.
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8PSK - σ∆ = 0.05, Pilot Frequency = 0.05
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8PSK Mean Number of Tikhonov Mixture Components -
Full Algorihtm, Maximum 3 lobes, ǫ = 4
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Complexity

Computational load per code symbol per iteration for 8PSK
constellation, Eb

N0
= 8dB

Algorithm DP BARB Reduced Complex-
ity, Order 3

Iteration Constant for
all iterations

Constant 1 2 3 4

MULS 68360 61 312 292 273 238
LUT 128 24 147 134 123 102
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32PSK - σ∆ = 0.01, Pilot Frequency = 0.025
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Contributions

A low complexity joint decoding and estimation algorithm for
strong phase noise channels with excellent performance in,

High code rates
Low pilot frequency
High order constellations
Strong phase noise

A new approach for mixture dimension reduction (KLD upper
bounded).

A novel approach for combating cycle slips.

A new theorem in directional statistics for clustering circular
mixtures.

Introduction the field of directional statistics to iterative phase
tracking.
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Backup
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Helpful Results for KL Divergence

We introduce the reader to three results related to the
Kullback-Leibler Divergence which will prove helpful in the next
sections.

Lemma

Suppose we have two distributions, f (θ) and g(θ),

f (θ) =

M∑

i=1

αi fi(θ)

DKL(
M∑

i=1

αi fi(θ)||g(θ)) ≤
M∑

i=1

αiDKL(fi(θ)||g(θ)) (1)

The proof of this bound is based on the Jensen inequality.

Shachar Shayovitz MSc. Presentation
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Helpful Results for KL Divergence

Lemma

Suppose we have three distributions, f (θ) ,g(θ) and h(θ). We

define the following mixtures,

f1(θ) = αf (θ) + (1− α)g(θ) (2)

f2(θ) = αf (θ) + (1− α)h(θ)) (3)

for 0 ≤ α ≤ 1
Then,

DKL(f1(θ)||f2(θ)) ≤ (1− α)DKL(g(θ)||h(θ)) (4)
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Helpful Results for KL Divergence

Lemma

Suppose we have two mixtures, f (θ) and g(θ), of the same order

M,

f (θ) =
M∑

i=1

αi fi(θ)

and

g(θ) =

M∑

j=1

βigi (θ)

Then the KL divergence between them can be upper bounded by,

DKL(f (θ)||g(θ)) ≤ DKL(α||β) +
M∑

i=1

αiDKL(fi (θ)||gi (θ)) (5)

where DKL(α||β) is the KL divergence between the probabilityShachar Shayovitz MSc. Presentation
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Bessel Functions Approximation

Since implementing a modified bessel function is computationally
prohibitive, we present the following
approximation,

log(I0(k)) ≈ k −
1

2
log(k)−

1

2
log(2π) (6)

which holds for k > 2, i.e. reasonably narrow distributions.
Using the following relation,

I1(x) =
dI0(x)

dx
(7)

We find that,
I1(k)

I0(k)
=

d

dk
(log(I0(k))) (8)

Therefore
I1(k)

I0(k)
≈ 1−

1

2k
(9)
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Computation of Pu(ck)

Pu(ck) ∝

∫ 2π

0
qf (θk)qb(θk)ek(ck , θk)dθk

We decompose the computation to a summation of four
components,

Pu(ck) ∝ A+ B + C + D

and get,

A =

Nk
f∑

i=1

Nk
b∑

j=1

α
k,f
i α

k,b
j

I0(|z
k,f
i + z

k,b
j +

rkc
∗

k

σ2
|)

2πI0(|z
k,f
i |)I0(|z

k,b
j |)
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Computation of Pu(ck)

When implementing the algorithm in log domain and for large
enough |zk,fi | and |z

k,b
j |

log

(
I0(|Zψ|)

2πI0(|z
k,f
i |)I0(|z

k,b
j |)

)
≈ |Zψ| − |z

k,f
i | − |z

k,b
j |
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Approximation of KLD

g1(θ) =
eRe[z1e

−jθ]

2πI0(|z1|)
(10)

g2(θ) =
eRe[z2e

−jθ]

2πI0(|z2|)
(11)

We wish to compute the following KL divergence,

DKL(g1(θ)||g2(θ)) (12)

which is,

DKL =

∫ 2π

0
g1(θ) log(

eRe[z1e
−jθ]I0(|z2|)

eRe[z2e
−jθ]I0(|z1|)

)dθ (13)
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Approximation of KLD

Thus,

DKL = log(
I0(|z2|)

I0(|z1|)
)+

∫ 2π

0
g1(θ)(Re[z1e

−jθ]−Re[z2e
−jθ])dθ (14)

After some algebraic manipulations, we get

DKL = log(
I0(|z2|)

I0(|z1|)
) +

I1(|z1|)

I0(|z1|)
(|z1| − |z2|cos(∠z1 − ∠z2)) (15)

Using (9) and (6) we get

DKL ≈ |z2|(1−cos(∠z1−∠z2))−
1

2
log(
|z2|

|z1|
)+
|z2|

2|z1|
cos(∠z1−∠z2)

(16)
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CMVM Proof

Let f (θ) be any circular distribution defined on [0, 2π) and g(θ) a
Tikhonov distribution.

g(θ) =
eRe[κe

−j(θ−µ)]

2πI0(κ)
(17)

We wish to find,

[µ∗, κ∗] = arg min
µ,κ

DKL(f ||g) (18)

According to the definition of the KL divergence,

DKL(f ||g) = −h(f )−

∫ 2π

0
f (θ) log g(θ)dθ (19)
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CMVM Proof

where the differential entropy of the circular distribution f (θ), h(f )
does not affect the optimization,

[µ∗, κ∗] = arg max
µ,κ

∫ 2π

0
f (θ) log g(θ)dθ (20)

After the insertion of the Tikhonov form into (20), we get

[µ∗, κ∗] = arg max
µ,κ

∫ 2π

0
f (θ)Re[κe−j(θ−µ)]dθ − log 2πI0(κ) (21)

Rewriting (21) as an expectation and maximizing over µ only,

µ∗ = arg max
µ

κE(Re[e−j(θ−µ)]) (22)
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CMVM Proof

Using the linearity of the expectation and real operators,

µ∗ = arg max
µ

κRe[E(e j(θ−µ))] (23)

We can view (23) as an inner product operation and therefore, the
maximal value of µ is obtained, according to the Cauchy-Schwartz
inequality, for

µ∗ = ∠E(e j(θ)) (24)
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CMVM Proof

Now we move on to finding the optimal κ, using the fact that we
found the optimal µ. For µ∗, the optimal g(θ) needs to satisfy

∂D(f ||g)

∂κ
= 0 (25)

After applying the partial derivative to (21), and using

dI0(κ)

dκ
=

I1(κ)

I0(κ)
(26)
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CMVM Proof

We get,

E(Re[e−j(θ−µ∗)]) =
I1(κ

∗)

I0(κ∗)
(27)

Recalling the definitions of circular moments, we get that the
optimal Tikhonov distribution g(θ) is given by matching its
circular mean and variance to the circular mean and circular
variance of the distribution f (θ).
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Apply CMVM

At each clustering iteration, a set J of mixture components indices
of the input Tikhonov mixture is selected. The corresponding
mixture components are clustered using the CMVM operator. In
this appendix we will explicitly compute the application of the
CMVM operator and introduce several approximations to speed up
the computational complexity. For simplicity, assume that the
mixture components in the set J are,

f J(θk) =

|J|∑

l∈J

αl

eRe[Zle
−jθk ]

2πI0(|Zl |)
(28)

Shachar Shayovitz MSc. Presentation



Introduction Previous Work Tikhonov Mixture Summary BackupKL Lemmas Bessel Pu(ck ) KLD CMVM Apply CMVM PLL

Apply CMVM

Using CMVM theorem and skipping the algebraic details, the
CMVM operator for (28), is:

CMVM(f J(θk)) =
eRe[Z

f
k
e−jθk ]

2πI0(|Z f
k |)

(29)

where
Z f
k = k̂e jµ̂ (30)

and

µ̂ = arg

|J|∑

l∈J

αl

I1(|Zl |)

I0(|Zl |)
e j arg(Zl ) (31)

1

2k̂
= 1−

|J|∑

l∈J

αl

I1(|Zl |)

I0(|Zl |)
Re[e j(µ̂−arg(Zl ))] (32)
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Apply CMVM

Thus, the approximated versions of (32) and (31) are

µ̂ = arg[

|J|∑

l∈J

αl (1−
1

2|Zl |
)e j arg(Zl )] (33)

1

2k̂
= 1−

|J|∑

l∈J

αl(1−
1

2|Zl |
) cos(µ̂− arg(Zl)) (34)

We also use the approximation for the modified bessel function in
the computation of αl .
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Apply CMVM

For a small enough ǫ, cos(µ̂− arg(Zl)) ≈ 1, thus one can further
reduce the complexity of (34)

1

k̂
=

|J|∑

l∈J

αl

1

|Zl |
(35)

which coincides with the computation of a variance of a Gaussian
mixture.
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Mixture Reduction As Phase Noise Tracking

Multiple PLLs Equivalence

Assuming slowly varying phase noise and high SNR, the mixture
reduction tracking loop i , θ̂ik for each trajectory can be computed
in the following manner,

θ̂ik ≈ θ̂ik−1 +
|rk−1||ct |

Gk−1σ2
(∠rk−1 + ∠ct − θ̂ik−1)

where, ct and Gk−1 are a soft decision of the constellation symbol
and the inverse conditional MSE for θ̂k−1,
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Multiple PLL Equivalence Theorem

Under certain channel conditions, the mixture reduction algorithms
can be viewed as multiple PLLs tracking the different phase
trajectories. For reasons of simplicity, will only show the case
where the mixture reduction algorithm converges to a single PLL
(the generalization for more than one PLL is trivial, as long as
there are no splits). As described earlier, we model the forward
messages as Tikhonov mixtures. Suppose the mth component is,

pmf (θk−1) =
eRe[z

k−1,f
m e

−jθk−1 ]

2πI0(|z
k−1,f
m |)

(36)
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Multiple PLL Equivalence Theorem

then we get a Tikhonov mixture f (θk),

f (θk) =

M∑

i=1

αi fi(θk) (37)

where,

fi (θk) =
e
Re[z̃k−1,f

m,i
e−jθk ]

2πI0(|z̃
k−1,f
m,i |)

(38)

z̃
k−1,f
m,i =

(zk−1,f
m +

rk−1x
∗

i

σ2
)

1 + σ2
∆|(z

k−1,f
m +

rk−1x
∗

i

σ2
)|

(39)

and xi is the i th constellation symbol.
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Multiple PLL Equivalence Theorem

We insert (37) into the mixture reduction algorithms. Assuming
slowly varying phase noise and high SNR, such that the mixture
reduction will cluster all the mixture components, with non
negligible probability, to one Tikhonov distribution. Then, the
circular mean, θ̂k , of the clustered Tikhonov distribution is
computed according to,

θ̂k = ∠E(e jθk ) (40)

where the expectation is over the distribution f (θk). We note that
for every complex valued scalar z , the following holds

∠z = ℑ(log z) (41)
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Multiple PLL Equivalence Theorem

where ℑ denotes the imaginary part of a complex scalar. If we
apply (41) to (40) we get,

θ̂k = ℑ

(
log

M∑

i=1

αi

z̃
k−1,f
m,i

|z̃k−1,f
m,i |

)
(42)

which can be rewritten as,

θ̂k = ℑ

(
log

M∑

i=1

αi

z
k−1,f
m +

rk−1x
∗

i

σ2

|zk−1,f
m +

rk−1x
∗

i

σ2
|

)
(43)

we denote,

Gk−1 = |z
k−1,f
m +

rk−1x
∗
i

σ2
| (44)

and assume that Gk−1, the conditional causal MSE of the phase
estimation under mixture component fi(θk), is constant for all
significant components.
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Multiple PLL Equivalence Theorem

Then,

θ̂k ≈ θ̂k−1 + ℑ

(
log

(
1 +

rk−1

Gk−1z
k−1,f
m σ2

(
M∑

i=1

αix
∗
i

)))
(45)

where,
θ̂k−1 = ∠zk−1,f

m (46)

We will define csoft as the soft decision symbol using the significant
components,

csoft =
M∑

i=1

αixi (47)
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Multiple PLL Equivalence Theorem

Since we assume high SNR and small phase noise variance, then
the tracking conditional MSE will be low, i.e |zk,f1 | will be high.
Using the fact that for small angles φ,

∠(1 + φ) ≈ ℑ(φ) (48)

Therefore,

θ̂k ≈ θ̂k−1 + ℑ(
rk−1c

∗
soft

Gk−1z
k−1,f
m σ2

) (49)

Which, again for small angles x , sin(x) ≈ x ,

θ̂k ≈ θ̂k−1 +
|rk−1||c

∗
soft |

Gk−1|z
k−1,f
m |σ2

(∠rk−1 + ∠c∗soft − θ̂k−1) (50)
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Accuracy Theorem

In the first iteration, the algorithm selects the highest probability
mixture component and denotes it as flead (θ). Let M0, be the set
of mixture components fi(θ) selected for clustering,

M0 = {fi (θ) | DKL(fi (θ)||flead (θ)) ≤ ǫ} (51)

and M1 be the set of mixture components which were not selected,

M1 = {fi (θ) | DKL(fi (θ)||flead (θ)) > ǫ} (52)
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Accuracy Theorem

Thus, ∑

i∈M0

αi

β1
DKL(fi(θ)||flead (θ)) ≤ ǫ (53)

where,
β1 =

∑

i∈M0

αi (54)

Using Lemma (3),

DKL



∑

i∈M0

αi

β1
fi(θ)||flead (θ)


 ≤ ǫ (55)
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Accuracy Theorem

The algorithm then clusters all the distributions in M0 using
CMVM,

g1(θ) = CMVM



∑

i∈M0

αi

β1
fi(θ)


 (56)

then,

DKL



∑

i∈M0

αi

β1
fi (θ)||g1(θ)


 ≤ DKL



∑

i∈M0

αi

β1
fi (θ)||flead (θ)


 (57)

which means that,

DKL



∑

i∈M0

αi

β1
fi(θ)||g1(θ)


 ≤ ǫ (58)
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Accuracy Theorem

We can rewrite the mixtures f (θ) and g(θ) in the following way,

f (θ) = αM0
fM0

(θ) + αM1
fM1

(θ) (59)

g(θ) = β1g1(θ) + (1− β1)h(θ) (60)

where,
αM0

=
∑

i∈M0

αi (61)

αM1
=
∑

i∈M1

αi (62)

fMi
(θ) =

∑

j∈Mi

αj

αMi

fj(θ) (63)
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Accuracy Theorem

Using (54),
αMi

= βi (64)

Therefore (59) and (60) are two mixtures of the same size and
have exactly the same coefficients, thus the KL of the probability
mass functions induced by the coefficients of both mixtures is zero.
Using Lemma (5),

DKL(f (θ)||g(θ)) ≤ β1DKL(fM0
(θ)||g1(θ)+(1−β1)DKL(fM1

(θ)||h(θ))
(65)

using (57) we get,

DKL(f (θ)||g(θ)) ≤ β1ǫ+ (1− β1)DKL(fM1
(θ)||h(θ)) (66)
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Accuracy Theorem

If we find a Tikhonov mixture h(θ) ,which satisfies,

DKL(fM1
(θ)||h(θ)) ≤ ǫ (67)

then we will prove the theorem. But (67) is exactly the same as
the original problem, thus applying the same clustering steps as
described earlier on the new mixture fM1

(θ) will ultimately satisfy,

DKL(f (θ)||g(θ)) ≤ ǫ (68)
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Directional Statistics

Introduction

Directional statistics is a branch of mathematics which studies
random variables defined on circles and spheres.
The circular mean and variance of a circular random variable θ,
are defined as

µC = ∠E(e jθ)

σ2
C = E(1− cos(θ − µC ))
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Mixture Reduction Algorithm with Cycle Slip Estimation

j ← 1
while j ≤ L or |f (θ)| > 0 do

lead ← argmax{α}
for i = 1→ |f (θ)| do

if DKL(fi (θ)||flead (θ)) ≤ ǫ then
idx ← [idx , i ]

end if
end for
βj ←

∑
i∈idx αi

gj (θ)← CMVM(
∑

i∈idx
αi

βj
fi (θ))

f (θ)← f (θ)−
∑

i∈idx αi fi(θ)
j ← j + 1

end while
φf
k ← (

∑
j βj )φ

f
k−1
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Recovering From Cycle Slips

pf (θ0)←
1
2π

φf
0 ← 1

k ← 1
while k ≤ K do

Compute pd (θk−1)
if ck−1 is a pilot then

qf (θk−1)← φf
k−1pf (θk−1) + (1− φf

k−1)
1
2π

t ← 1
else

qf (θk−1)← pf (θk−1)
t ← φf

k−1

end if
p̃f (θk)←

∫ 2π
0 qf (θk−1)pd (θk−1)p∆(θk − θk−1)dθk−1

[pf (θk), φ
f
k ]← MixReductionAlgo(p̃f (θk), t)

k ← k + 1
end while
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8PSK - σ∆ = 0.05, Pilot Frequency = 0.05
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8PSK Mean Number of Tikhonov Mixture Components -
Reduced Complexity Algorithm, Maximum 3 lobes, ǫ = 1
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8PSK Mean Number of Tikhonov Mixture Components -
Unlimited Algorithm
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BPSK - σ∆ = 0.1, Pilot Frequency = 0.0125
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Future Research

Use the mixture model framework for asymmetrical
constellation analysis (Accepted to GlobeCom 2013)

Compute the mean number of mixture components for given
channel conditions
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