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Abstract

In this work, a new low complexity iterative algorithm for decoding data transmitted over
strong phase noise channels is presented. The algorithm is based on the Sum & Product
Algorithm (SPA) with phase noise messages modeled as Tikhonov mixtures.

Since mixture based Bayesian inference such as SPA, creates an exponential increase
in mixture order for consecutive messages, mixture reduction is necessary. We propose a
low complexity mixture reduction algorithm which finds a reduced order mixture whose
dissimilarity metric is mathematically proven to be upper bounded by a given threshold. As
a part of the mixture reduction, we provide a new method for optimal clustering, which finds
the closest Tikhonov distribution, in Kullback Leibler sense, to any circular distribution. We
further show a method for limiting the number of mixture components and further complexity
reduction.

We present simulation results and complexity analysis for the proposed algorithm which
show better performance than other state of the art low complexity algorithms. The al-
gorithm has shown superior performance in high code rate, strong phase noise, high order
constellations and sparse pilot patterns scenarios.

Finally, we show that the Tikhonov mixture approximation of SPA messages is equivalent
to the tracking of multiple phase trajectories, or also can be looked as smart multiple phase
locked loops (PLL).
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Chapter 1

Introduction

The subject of this thesis is Message Passing Algorithms for Phase Noise Tracking
Using Tikhonov Mixtures. The goal is to derive low complexity algorithms for joint
decoding and estimation of coded information in phase noise channels.

Many high frequency communication systems operating today employ low cost upcon-
verters or downconverters which create phase noise. Phase noise can severely limit the
information rate of a communications system and pose a serious challenge for the detection
systems. Moreover, simple solutions for phase noise tracking such as PLL either require low
phase noise or otherwise require many pilot symbols which reduce the effective data rate.

In the last decade we have witnessed a significant amount of research done on joint
estimation and decoding of phase noise and coded information. The use of LDPC or Turbo
decoders, as part of iterative message passing schemes, allows the receiver to operate in low
SNR regions while requiring less pilot symbols. In [54], the authors proposed an iterative
decoding scheme which is based on the factor graph representation of the joint posterior and
allows the design of efficient message passing algorithms which incorporate both the code
graph and the channel graph.

In order to perform MAP decoding of the code symbols, the SPA is applied to the factor
graph. The SP algorithm is a message passing algorithm which computes the exact marginal
for each code symbol, provided there are no cycles in the factor graph. In the case of phase
noise channels, the messages related to the phase are continuous, thus recursive computation
of messages requires computation of integrals which have no analytical solution and the di-
rect application of this algorithm is not feasible. A possible approximation of MAP detection
is to quantize the phase noise and perform an approximated SP. The channel phase takes
only a finite number of values L, thus creating a trellis diagram representing the random
walk. If we suppose a forward - backward scheduling, the SPA reduces to a BCJR run on
this trellis following LDPC decoding. This algorithm (called DP - discrete phase in this
work) requires large computational resources (large L) to reach high accuracy, rendering it
not practical for some real world applications.

In this contribution, a new approach for approximating the phase noise forward and
backward messages using Tikhonov mixtures is proposed. Since SP recursion equations
create an exponential increase in the number of mixture components, a mixture reduction
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algorithm is needed at each phase message calculation to keep the mixture order small.
We have tested a few state of the art clustering algorithms which failed for this task and
cannot provide proven accuracy under any optimality criterion. Therefore we have derived a
new clustering algorithm. A distinct property of the new algorithm is its ability to provide
adaptive mixture order, while keeping a specified accuracy constraint (where the accuracy
is the Kullback Leibler (KL) divergence between the original and the clustered pdfs). A
proof for the accuracy of this mixture reduction algorithm is also presented in this work.
We show that the process of hypothesis expansion followed by clustering is equivalent to
a sophisticated tracker which can track most of the multiple hypotheses of possible phase
trajectories. Occasionally, the number of hypotheses grows, and more options for phase
trajectories emerge. Each such event causes the tracker to create another tracking loop.
In other occasions, two trajectories are merged into one. We show, as an approximation,
the tracking of each isolated phase trajectory is equivalent to a PLL and a split event is
equivalent to a point in time when a phase slip may happen.

In the second part, we use a limited order Tikhonov mixture. This limitation may cause
the tracking algorithm to lose tracking of the correct phase trajectory, and is analogous to
a cycle slip in PLL. We propose a method to combat these slips with only a slight increase
in complexity. The principle operation of the method is that each time some hypothesis is
abandoned, we can calculate the probability of being in the correct trajectory and we can
use this information wisely in the calculation of the messages. We provide further complex-
ity reduction approaches. One of these approaches is to abandon the clustering altogether,
and replace it by component selection algorithm, which maintains the specified accuracy but
requires more components in return. Now the complexity of clustering is traded against the
complexity of other tasks. Finally, we show simulations results which demonstrate that the
proposed scheme’s Packet Error Rate (PER) are comparable to the DP algorithm and that
the resulting computational complexity is much lower than DP and in fact is comparable to
the algorithm proposed in [7].

In this thesis we present the following main results:

• A low complexity joint decoding and estimation algorithm for strong phase noise chan-
nels with excellent performance in,

– High code rates
– Low pilot frequency
– High order constellations
– Strong phase noise

• A new approach for mixture dimension reduction which guarantees the KL divergence
between the original mixture and the reduced mixture be upper bounded.

• A novel approach for combating cycle slip events in phase tracking.

• A new theorem in directional statistics for clustering circular mixtures.

• We provide insight to the underlying dynamics of Bayesian phase tracking
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Chapter 2

Preliminaries

2.1 Directional Statistics

Directional statistics is a branch of mathematics which studies random variables defined on
circles and spheres. For example, the probability of the wind to blow at a certain direction.
The circular mean and variance of a circular random variable θ, are defined in [29], as

µC = 6 E(ejθ) (2.1)

σ2
C = E(1− cos(θ − µC)) (2.2)

One can see that for small angle variations around the circular mean, the definition of the
circular variance coincides with the standard definition of the variance of a random variable
defined on the real axis, since 1− cos(θ−µC) ≈ (θ−µC)2. One of the most commonly used
circular distributions is the Tikhonov distribution and is defined as,

g(θ) = eRe[κge
−j(θ−µg)]

2πI0(κg)
(2.3)

According to (2.1) and (2.2), the circular mean and circular variance of a Tikhonov distri-
bution are,

µC = µg (2.4)

σ2
C = 1− I1(κg)

I0(κg)
(2.5)

where I0(x) and I1(x) are the modified Bessel function of the first kind of the zero and first
order, respectively. An alternative formulation for the Tikhonov pdf uses a single complex
parameter z = κge

jµg residual phase noise in a first order PLL when the input phase noise
is constant is the tikhonov distribtion.
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2.2 Circular Mean & Variance Matching
In this section we will present a new theorem in directional statistics. The theorem states
that the nearest Tikhonov distribution, g(θ), to any circular distribution,f(θ) (in a Kullback
Liebler (KL) sense), has its circular mean and variance matched to those of the circular
distribution . The Kullback Liebler (KL) divergence is a common information theoretic
measure of similarity between probability distributions, and is defined as [21],

D(f ||g) ,
∫ 2π

0
f(θ) log f(θ)

g(θ)dθ (2.6)

Definition 1. We define the operator g(θ) = CMVM[f(θ)] (Circular Mean and Variance
Matching), to take a circular pdf - f(θ) and create a Tikhonov pdf g(θ) with the same circular
mean and variance.
Theorem 2.2.1. (CMVM): Let f(θ) be a circular distribution, then the Tikhonov distribu-
tion g(θ) which minimizes D(f ||g) is,

g(θ) = CMVM[f(θ)] (2.7)

The proof can be found in appendix A.

2.3 Helpful Results for KL Divergence
We introduce the reader to three results related to the Kullback-Leibler Divergence which
will prove helpful in the next sections.
Lemma 2.3.1. Suppose we have two distributions, f(θ) and g(θ),

f(θ) =
M∑
i=1

αifi(θ)

DKL(
M∑
i=1

αifi(θ)||g(θ)) ≤
M∑
i=1

αiDKL(fi(θ)||g(θ)) (2.8)

The proof of this bound can be found in [47] and is based on the Jensen inequality.
Lemma 2.3.2. Suppose we have three distributions, f(θ) ,g(θ) and h(θ). We define the
following mixtures,

f1(θ) = αf(θ) + (1− α)g(θ) (2.9)

f2(θ) = αf(θ) + (1− α)h(θ)) (2.10)
for 0 ≤ α ≤ 1

Then,

DKL(f1(θ)||f2(θ)) ≤ (1− α)DKL(g(θ)||h(θ)) (2.11)
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The proof for this identity can also be found in [47].

Lemma 2.3.3. Suppose we have two mixtures, f(θ) and g(θ), of the same order M ,

f(θ) =
M∑
i=1

αifi(θ)

and
g(θ) =

M∑
j=1

βigi(θ)

Then the KL divergence between them can be upper bounded by,

DKL(f(θ)||g(θ)) ≤ DKL(α||β) +
M∑
i=1

αiDKL(fi(θ)||gi(θ)) (2.12)

where DKL(α||β) is the KL divergence between the probability mass functions defined
by all the coefficients αi and βi. The proof of this bound uses the sum log inequality and
can be found in [9].
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Chapter 3

System Model

In this chapter we present the system model used throughout this work. We begin by
introducing the reader to phase noise channels and the factor graph framework for joint
decoding and estimation in such channels. Later, we show the specific system model for this
work.

3.1 Phase Noise Channel
Oscillators suffer from imperfections which create random phase and frequency instabilities.
These instabilities are manifested as a spectrum of noise around the oscillator’s operating
frequency. Denote the instantaneous frequency noise in an oscillator as Φ(τ), then the phase
noise component in the output signal is,

φ(t) = 2π
∫ t

0
Φ(τ)dτ (3.1)

The analog output of a quadrature modulation digital communications system using a noisy
oscillator can be written as,

s(t) = <{(I(t) + jQ(t))ej(2πfct+φ(t))} (3.2)

where I(t) and Q(t) are the in-phase and quadrature components. We write (3.2) as,

s(t) = <{[(I(t) + jQ(t))p(t)]ej(2πfct)} (3.3)

where,
p(t) = ejφ(t) (3.4)

and
E{p(t)p∗(t+ τ)} = E{ej(φ(t)−φ(t+τ))} (3.5)

Thus the spectrum of s(t) is a convolution of the spectrum of (I(t) + jQ(t)) and the
spectrum of p(t) - P (f). Using the fact that the power spectrum is the fourier transform
of the autocorrelation function for a wide sense stationary process, we will compute the
spectrum P (f) using its autocorrelation.
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Suppose Φ(τ) is a Gaussian white process with,

Φ(τ) ∼ N (0, N0) (3.6)

then using (3.1), we get that (3.5) is the characteristic function of the Gaussian random
variable φ(t)− φ(t+ τ), whose mean and variance are zero and N0|τ | respectively,

E{p(t)p∗(t+ τ)} = e
−N0|τ |

2 (3.7)

Therefore the spectrum P (f) is,

P (f) = N0

π2N2
0 + f 2 (3.8)

Assuming the phase noise is almost constant during a symbol duration, then after matched
filtering and sampling every Ts seconds, we get a discrete time phase noise Wiener process,

θk = φ(kTs) (3.9)

where
θk = θk−1 + ∆k (3.10)

and ∆k is a real, i.i.d gaussian sequence with ∆k ∼ N (0, N0Ts).

The variance of ∆k was computed using the fact that power spectrum of the discrete
time series ejθk - Sθ(f), satisfies the following relation,

Sθ(2πf) = 1
Ts
P

(
2πf
Ts

)
(3.11)

which means that
Sθ(2πf) = 1

Ts

N0

π2N2
0 +

(
2πf
Ts

)2 (3.12)

thus,
Sθ(f) = TsN0

π2N2
0T

2
s + (f)2 (3.13)

and using (3.8), we get that
E{∆2

k} = N0Ts (3.14)

3.1.1 Phase Noise Baseband Model
For the duration of this work, we assume the following system model. A sequence of data
bits is encoded using an LDPC code and then mapped to a complex signal constellation
A of size M , resulting in a sequence of complex modulation symbols c = (c0, c1, ..., cK−1).
This sequence is transmitted over an AWGN channel affected by carrier phase noise. Since
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Figure 3.1: Factor graph representation of the joint posterior distribution

we use a long LDPC code, we can assume the symbols are drawn independency from the
constellation. The discrete-time baseband complex equivalent channel model at the receiver
is given by:

rk = cke
jθk + nk k = 0, 1, ..., K − 1. (3.15)

where K is the length of the transmitted sequence of complex symbols.
The phase noise stochastic model is a Wiener process

θk = θk−1 + ∆k (3.16)

where ∆k is a real, i.i.d gaussian sequence with ∆k ∼ N (0, σ2
∆) and θ0 ∼ U [0, 2π). For

the sake of clarity we define pilots as transmitted symbols which are known to both the
transmitter and receiver and are repeated in the transmitted block every known number
of data symbols. We also define a preamble as a sequence of pilots in the beginning of a
transmitted block. We assume that the transmitted sequence is padded with pilot symbols
in order to bootstrap the algorithms and maintain the tracking.

3.2 Factor Graphs and the Sum Product Algorithm
Since we are interested in optimal MAP detection, we will use the framework defined in
[54], compute the SPA equations and thus perform approximate MAP detection. The factor
graph representation of the joint posterior distribution was given in [7] and is shown in Fig.
3.1. The resulting Sum & Product messages are computed by
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pf (θk) =
∫ 2π

0
pf (θk−1)pd(θk−1)p∆(θk − θk−1)dθk−1 (3.17)

pb(θk) =
∫ 2π

0
pb(θk+1)pd(θk+1)p∆(θk+1 − θk)dθk+1 (3.18)

pd(θk) =
∑
x∈A

Pd(ck = x)ek(ck, θk) (3.19)

Pu(ck) =
∫ 2π

0
pf (θk)pb(θk)ek(ck, θk)dθk (3.20)

ek(ck, θk) ∝ exp{−|rk − cke
jθk |2

2σ2 } (3.21)

p∆(θk) =
∞∑

l=−∞
g(0, σ2

∆, θk − l2π) (3.22)

Where rk,Pd, σ2 and g(0, σ2
∆, θ) are the received base band signal, symbol soft information

from LDPC decoder, AWGN variance and Gaussian distribution, respectively. The messages
pf (θk) and pb(θk) are called in this paper the forward and backward phase noise SP messages,
respectively.

The detection process starts with the channel section providing the first LLRs (Pu(ck)) to
the LDPC decoder, and so on. A different scheduling could be applied on a general setting,
but this will not be possible with the algorithms in this paper. Due to the fact that the phase
symbols are continuous random variables, a direct implementation of these equations is not
possible and approximations are unavoidable. Assuming enough quantization levels, the DP
algorithm can approximate the above equations as close as we wish. However, this algorithm
requires large computational resources to reach high accuracy, rendering it not practical for
some real world applications. In [48],[50] and [49], modified Tikhonov approximations were
used for the messages in the SPA which lead to a very simple and fast algorithm. In this
paper, an approximate inference algorithm is proposed which better balances the tradeoff
between accuracy and complexity for strong phase noise channels.

10



Chapter 4

Previous Work

Phase noise has attracted the attention of many researchers. The combination of phase noise
and LDPC/Turbo codes is especially interesting due to the fact that these codes perform
very well in low SNR regions. In this chapter we will overview previous work done in this
area. The solutions can be divided as follows:

• Standard LDPC with pilots

• Special LDPC designs

• Concatenation of LDPC with Rotationally Invariant (RI) Codes

• LDPC with differential encoding

Each of these categories can be further subdivided into a multitude of algorithms in the
receiver. In the following sections, we will describe shortly these solutions.

4.1 Standard LDPC with Pilots
In these solutions there is no constraint on the LDPC and in order to resolve phase ambiguity
and enable startup of any iterative decoding scheme, pilots are needed. The pilots are usually
a single symbol every N symbols. The various algorithms are different with regards to the
ability to accommodate large phase noise and complexity. Here is the list of algorithms,
divided into groups of common denominator.

4.1.1 Constant Phase Over the Block
These algorithms assume that the phase is unknown but constant over the burst. These
algorithms are usually very simple to implement but are not suited for real world applications
and the setting assumed in this work. However, we will highlight the algorithms that enable
division of the block into several small sub-blocks, and in this case they can be applied to the
case of low phase noise. The practical and intuitive idea is using soft information from the
code in order to improve the phase estimation and vise versa. In [37], Noels et al. provide a
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good theoretical basis to these algorithms. Various versions are described in [43], [30], [36],
[17], [27], [55], [28], [26], [59], [10], [58], [46], [5], [16] and [51].

4.1.2 Decision Aided PLL
When dynamic phase is to be tracked, many papers suggest a PLL that tracks the phase
within the block, and each iteration does a better job due to better symbol estimations.
However, PLL is not suitable for coded systems in high phase noise, since he decoder requires
a delay in decisions making, hence updating the PLL with relatively reliable decisions of the
decoder requires a delay in the loop. This imposes narrowing the PLL loop filter, causing
the PLL to fail in tracking large phase fluctuations. On the other hand, updating the PLL
with the tentative zero delayed decisions (i.e. not from the decoder output) will increase the
probability of errors in the decision making. Various implementations are described in [40],
[11], [2], [53], [38], [56] and [39].

4.1.3 Noncoherent Methods
Even though there is no differential encoding in the case of standard LDPC, noncoherent
type of metrics can still be used. These metrics are developed on the basis of the assumption
that the phase is constant over a block of N symbols which can be overlapping or not. In [11],
Ferrari et al. compare a non-coherent metric to PSP (PLL per state) and the noncoherent
is shown to be better by about 1dB from coherent in 5 degrees rms for BPSK. The authors
applied this on turbo code but it can be applied on LDPC as well. [41],[42] and [57] assume
independent phase per block, so they lose performance unless N is large enough. In [34] Idin
and Anastasopoulos present a low complexity non-coherent detection scheme for each block
of N symbols, with one pilot. This algorithm works by maximizing GLRT over phase and
due to low complexity we can use larger N for small phase noise and reduce its loss. [32]
shows excellent results by using noncoherent metrics and proper insertion into factor graphs.
[33] uses similar metrics and also gets good results. Using these metrics we can approach
coherent detection by using larger N if smaller phase noise is expected. It should be noted
that non coherent methods suffer from an intrinsic degradation with respect to the coherent
methods and are less flexible when combined with LDPC or turbo codes.

4.1.4 Model based
These methods assume a model for the phase noise posterior and apply Bayesian inference
to perform approximated MAP decoding of the code symbols. For example, [7] and [6] use
the code as part of an iterative decoding scheme in order to perform joint decoding and
estimation. The idea is to create a factor graph representation of the channel with the code
and apply the Sum and Product Algorithm (SPA) on this graph to compute the marginal
posteriors. However, as seen earlier, the resulting SPA messages are continuous and involve
integrals rendering these methods unfeasible. One solution is to quantize the phase mes-
sages and perform approximated SPA. This solution requires many quantization levels in
order to achieve high accuracy rendering it not practical for real world applications. In [6],
Colavolpe presents an algorithm which uses channel memory truncation and a Tikhonov
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model for the phase posterior. This approach performs well for low phase noise, but fails
for strong phase noise or high modulations since the finite time window does not allow the
estimator to effectively track the phase noise variations. In [7], section B., Colavolpe and
Barbieri present an algorithm which efficiently balances the tradeoff between accuracy and
complexity (called BARB in this paper). BARB uses Tikhonov distribution parameteriza-
tions (canonical model) for all the SPA messages concerning a phase node. Canonical models
are distributions which are characterized by a finite set of parameters. Thus if the correct
canonical model is used to describe the SPA phase messages, then one only needs to compute
its finite parameters and propagate them across the factor graph. This approach is the one
which was chosen in this thesis.

However, the approximation as defined in [7], is only good when the information from
the LDPC decoder is good (high reliability). In the first iteration the approximation is
poor, and in fact exists only for pilot symbols. The LLR messages related to the received
symbols which are not pilots are essentially zero (no information). This inability to accurately
approximate the messages in the first iterations causes many errors and can create an error
floor. This problem is intensified when using either low code rate or high code rate. In the
first case, the pilots are less significant, since their energy is reduced. In the second case,
the poor estimation of the symbols far away from the pilots cannot be overcome by the error
correcting capacity of the code. In order to overcome this limitation, BARB relies on the
insertion of frequent pilots to the transmitted block causing a reduction of the information
rate.

More examples of the model based methods include [35] which uses variational bound-
ing (mean field approximation) coupled with a linearized phase noise model to produce an
extended Kalman filter. For low order constellations, this algorithm provides BER levels
comparable to the Tikhonov algorithm in [7] with similar complexity but for high phase
noise the two schemes perform poorly. [52] and [23] use the phase quantization technique
and try to reduce complexity, although it still remains high, by sampling the probabilities
using particle filtering which is basically a sequential MCMC method. The Monte Carlo
methods perform very well but require very high computational complexity rendering them
not suited for our setting. In [45], the author proposed a hard decision directed extended
Kalman filter (EKF) to track time varying phase noise for an un-coded system. Moreover, in
the same contribution, an iterative receiver algorithm performing code-aided turbo synchro-
nization was derived using the expectation maximization (EM) framework and showed good
results. However, since these algorithms assume a linearized model they do not perform well
in strong phase noise.

In [24], Lehmann proposed a Gaussian mixture approach to approximate the phase poste-
riors and derived a mixture reduction algorithm which showed good results for Turbo codes.
The mixture reduction algorithm divides the interval 0− 2π to N non overlapping sections
and clusters all the components in each section to one Gaussian thus producing a mixture
of N components. This approach is very problematic since the author does not provide any
analysis as to how to choose the number N . This issue can affect the complexity and accuracy
of the mixture reduction algorithm a great deal since a large N can be too computational
consuming, while a small N would not provide good enough mixture reduction. Moreover,
there are implementation issues such as similar components on the edge of two sections and
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wrap around. These issues are dealt in this thesis where we came up with the idea of an
adaptive mixture order which finds a small reduced mixture satisfying an accuracy criterion
coupled with a mathematical proof for this. Moreover, due to the modulo-2π nature of the
phase, we propose the Tikhonov distribution which is much more convenient than Gaussian.

4.2 Special LDPC Designs
[18], [20] show a method to design LDPC such that pilots are not needed. They use local
check nodes for sub-blocks and then design all other check nodes such that each sub-block
is rotationally invariant. This method applies only to BPSK. However, in [19], Sridhar and
Cowley show how to apply the technique to higher modulations and show results on phase
noise channel and some low complexity receivers.

4.3 Concatenation of LDPC with Rotationally Invari-
ant (RI) Codes

Another attractive code design option is a serial concatenation of an outer code (which
can be either LDPC or convolutional code) with inner convolutional trellis code which has
the rotational invariance property. This property enables users to design high performance
iterative phase noise tracking algorithms independent of the outer code. [13] shows how to
design turbo differential (RI) specifically tailored for the phase noise channels, and shows
excellent results. RI codes are essentially non coherent codes and as such posses the same
intrinsic degradation with respect to coherent methods discussed earlier.

4.4 LDPC with Differential Encoding
Appending LDPC with differential encoding (DE) is a natural way to combat phase noise.
DE does not necessarily lead to degradation if proper receiver and code are applied. [14]
and [1] show that LDPC with DE is not worse than coherent for MPSK. [44] deals with a
class of codes called Repeat accumulate (RA) in which DE is natural. RA codes are good
well known codes and are easy to decode. [4] shows that such codes can be very efficient
also for MPSK. Moreover, iterative detection of LDPC/DE is treated in [44], [12], [22], [25],
[31] and [3] which present low complexity decoding with high performance on high phase
noise. However, iterative differential decoding requires many iteration in order to converge
thus creating a complexity issue.

4.5 Summary
The methods detailed above have very good performance in specific settings. However, they
do not perform well for,

• High order constellations
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• Strong phase noise

• High code rate

• Few pilots

In this work, we have developed a low complexity iterative decoding scheme whose per-
formance is very good in the above demanding scenarios. This scheme is based on the SPA
algorithm with Tikhonov mixture approximation for the phase noise messages and will be
detailed in the next chapter.
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Chapter 5

Tikhonov Mixture Canonical Model

In this chapter we will present the Tikhonov mixture canonical model for approximating the
forward and backward phase noise SP messages. Firstly, we will give insight to the motivation
of using a mixture model for pf (θk) and pb(θk). The message, pf (θk), is the posterior phase
distribution given the causal information (r0, ..., rk−1). If we look at the (local) maximum
over time we observe a phase trajectory. A phase trajectory is an hypothesis about the
phase noise process given the data. In case of zero a priori information, there will be a 2π

M

ambiguity in the phase trajectory, i.e. there will be M parallel phase trajectories with 2π
M

separation between them.
Having a priori information on the data, such as preamble or pilots, can strengthen the

correct hypothesis and gradually remove wrong trajectories. However, as we get far away
from the known data, more hypotheses emerge. This dynamics is illustrated in Fig. 5.1
where we have plotted in three dimensions the forward phase noise messages (pf (θk)) of
the DP algorithm. The DP algorithm computes the phase forward messages (3.17) on a
quantized phase space. The axes represent the time sample index, the quantized phase for
each symbol and the Z-axis is the posterior probability. In this figure there is only a small
preamble in the beginning and the end of the block and thus the first forward messages
are single mode Tikhonov distributions, which form a single trajectory in the beginning
of the figure and converges to a single trajectory in the end. After the preamble, due to
additive noise and phase noise, occasionally the algorithm cannot decide which is the correct
phase trajectory due to ambiguity in the symbols, thus it suggests to continue with two
trajectories each with its relative probability of occurring. This point is a split in the phase
trajectories and is analogous to a cycle slip in a PLL. If we approximate the messages at each
point in time as a a Tikhonov mixture with varying order, then each time we have a split,
more components are added to the mixture, and each time there is a merge, the number of
components decreases. This understating of the underlying structure of the phase messages
is one of the most important contributions of this paper and is the basis of the mixture
model approach.

The advantage of using mixtures is in the ability to track several phase trajectories
simultaneously and provide better extrinsic information to the LDPC decoder, which in
turn will provide better information on the code symbols to the phase estimator. In this way
the joint detection and estimation will converge quickly and avoid error floors. However,
as will be shown in a later section, the approximation of SP messages using mixtures is a
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Figure 5.1: SP Phase Noise Forward Messages

very difficult task since the mixture order increases exponentially as we progress the phase
tracking along the received block. Therefore, there is a need for an efficient dimension
reduction algorithm. In the following sections we will propose a mixture reduction algorithm
for the adaptive mixture model. But first we will formulate the mixture reduction task
mathematically and describe algorithms which attempt to accomplish this task.

5.1 Mixture Reduction - Problem Formulation

As proposed above, the forward and backward messages are approximated using Tikhonov
mixtures,

pf (θk) =
Nk
f∑

i=1
αk,fi tk,fi (θk) (5.1)

pb(θk) =
Nk
b∑

i=1
αk,bi tk,bi (θk) (5.2)

where:

tk,fi (θk) = eRe[z
k,f
i e−jθk ]

2πI0(|zk,fi |)
(5.3)
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tk,bi (θk) = eRe[z
k,b
i e−jθk ]

2πI0(|zk,bi |)
(5.4)

and, αk,fi ,αk,bi ,zk,fi ,zk,bi are the mixture coefficients and Tikhonov parameters of the for-
ward and backward messages of the phase sample. If we insert approximations (5.1) and
(5.2) in to the forward and backward recursion equations (3.17) and (3.18) respectively, we
get,

p̃f (θk) =
Nk−1
f∑
i=1

∫ 2π

0
αk−1,f
i tk−1,f

i (θk−1)pd(θk−1)p∆(θk − θk−1)dθk−1 (5.5)

p̃b(θk) =
Nk+1
b∑
i=1

∫ 2π

0
αk+1,b
i tk+1,b

i (θk+1)pd(θk+1)p∆(θk+1 − θk)dθk+1 (5.6)

It is shown in [7] that the convolution of a Tikhonov and a Gaussian distributions is a
Tikhonov distribution,

p̃f (θk) =
Nk−1
f∑
i=1

∑
x∈A

αk−1,f
i λk−1,f

i,x

eRe[γ(σ∆,Z̃
k−1,f
i,x )e−jθk ]

2πI0(|γ(σ∆, Z̃
k−1,f
i,x )|)

(5.7)

p̃b(θk) =
Nk+1
b∑
i=1

∑
x∈A

αk+1,b
i λk+1,b

i,x

eRe[γ(σ∆,Z̃
k+1,b
i,x )e−jθk ]

2πI0(|γ(σ∆, Z̃
k+1,b
i,x )|)

(5.8)

where
Z̃k−1,f
i,x = zk−1,f

i + rk−1x
∗

σ2 (5.9)

λk−1,f
i,x = 1

A
Pd(ck−1 = x)

I0(|Z̃k−1,f
i,x |)

I0(|zk−1,f
i |)

(5.10)

Z̃k+1,b
i,x = zk+1,b

i + rk+1x
∗

σ2 (5.11)

λk+1,b
i,x = 1

B
Pd(ck+1 = x)

I0(|Z̃k+1,b
i,x |)

I0(|zk+1,b
i |)

(5.12)

γ(σ∆, Z) = Z

1 + |Z|σ2
∆

(5.13)

where A and B are a normalizing constants.
Therefore, equations (5.7) and (5.8) are Tikhonov mixtures of order Nk

fM and Nk
bM .

Since we do not want to increase the mixture order every symbol, a mixture dimension re-
duction algorithm must be derived which captures ”most” of the information in the mixtures
p̃f (θk) and p̃b(θk), while keeping the computational complexity low. From now on, we will
present only the forward approximations, but the same applies for the backward.

There are many metrics used for mixture reduction. The two most commonly used are
the Integral Squared Error (ISE) and the KL. The ISE metric is defined for mixtures f(θ)
and g(θ) as follows,
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DISE(f(θ)||g(θ)) =
∫ 2π

0
(f(θ)− g(θ))2dθ (5.14)

We chose the KL divergence for the cost function between the reduced mixture and the
original mixture rather than ISE, since the former is expected to get better results. For
example, assume a scenario where there is a low probability isolated cluster of components,
then if the reduction algorithm would prune that cluster the ISE based cost will not be
effected. However, the KL based reduction will have to assign a cluster since the cost of not
approximating it, is very high. In general, the KL divergence does not take in to account
the probability of the components while the ISE does. This feature of KL is useful since we
wish to track all the significant phase trajectories regardless of their probability.
We define the following mixture reduction task using the Kullback Leibler divergence - Given
a Tikhonov mixture f(θ) of order L, find a Tikhonov mixture g(θ) of order N (L > N), which
minimizes,

DKL(f(θ)||g(θ)) (5.15)

where,

f(θ) =
L∑
i=1

αifi(θ) (5.16)

g(θ) =
N∑
j=1

βjgj(θ) (5.17)

where f(θ) is the mixture p̃f (θk) and the reduced order mixture g(θ) will be the next for-
ward message, pf (θk). We would like to provide an additional insight to choosing KL. The
information theoretic meaning of KL divergence is that we wish that the loss in bits when
compressing a source of probability f(θ), with a code matched to the probability g(θ) will
be not larger than ε. Thus, we wish to find a lower order mixture f(θ) which is a compressed
version of f(θ).

5.2 Mixture Reduction algorithms - Review
There is no analytical solution for (5.15), but there are many mixture reduction algorithms
which provide a suboptimal solution for it. They can be generally classified in to two groups,
local and global algorithms. The global algorithms attempt to solve (5.15) by gradient descent
type solutions which are very computationally demanding. The local algorithms usually
start from a large mixture and prune out components/merge similar components, according
to some rule, until a target mixture order is reached. A very good summary of many of these
algorithms can be found in [8]. The global algorithms do not deal with KL divergence and
thus are not suited for our problem. We will review two local algorithms in the following
section which provide the best performance in the sense of best balancing the tradeoff between
complexity and accuracy, and show why they fail for our case. The first algorithm is the
one proposed in [47]. This algorithm minimizes a local problem, which sometimes provides
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a good approximation for (5.15).
Given (5.16), the algorithm finds a pair of mixture components, fi∗ and fk∗ which satisfy,

[i∗, k∗] = argmin
i,k

DKL(αfi + (1− α)fk||gj(θ)) (5.18)

where,
gj(θ) = CMVM(αfi + (1− α)fk) (5.19)

and α is normalized probability of fi after dividing by the sum of the probabilities of fi
and fk. The algorithm merges the two components to gj(θ), thus the order of (5.16) has now
decreased by one. This procedure is now repeated on the new mixture iteratively to find
another optimal pair until the target mixture order is reached. It should be noted that the
component’s probability influences the metric (5.18). Suppose we have two very different
components, one with high probability and another with very low probability, which is the
correct hypothesis. Then the algorithm may choose to cluster them, and the low probability
component will be lost which may be the correct trajectory. Another algorithm is the one
proposed in [15], which also does not directly solve (5.15), but defines another metric which
is much easier to handle mathematically. The algorithm’s operation is very similar to the
K-means algorithm. It first chooses an initial reduced mixture g(θ) and then iteratively
performs the following,

1. Select the clusters - Map all fi to the gj which minimizes DKL(fi||gj)

2. Regroup - For all j, optimally cluster the elements fi which were mapped to each gj to
create the new g(θ)

This algorithm is dependent on initial conditions in order to converge to the lowest
mixture. Also, the iterative process increases the computational complexity significantly.
In [15] and [47], the Gaussian case was considered, thus the clustering was performed using
Gaussian moment matching. For our setting, we have taken the liberty to change the moment
matching to CMVM, since we have Tikhonov distributions and not Gaussian. Note that in
both algorithms, the target order must be defined before operation, since they have to know
when to stop. Selecting the proper target mixture order is a difficult task. On one hand, if
we choose a large target order, then the complexity will be too high. On the other hand,
if we choose the order to be low then the algorithm may cluster components which clearly
need not be merged but since they provide the minimal KL divergence, they are clustered.
Therefore, in order to maintain a good level of accuracy, the task should be to guarantee an
upper bound on the KL divergence and not try to unsuccessfully minimize it. Moreover, it
should be noted that in our setting the mixture reduction task (5.15), is performed many
times and not once. Therefore, there may not be a need to have the same reduced mixture
order for each symbol. These ideas will lead us to the approach presented in the next chapter
of the adaptive mixture canonical model.
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Chapter 6

A New Approach to Mixture
Reduction

We have seen that the current state of the art low complexity mixture reduction algorithms
based on a fixed target mixture order do not provide good enough approximations to (5.15).
Moreover, the choice of the mixture order plays a crucial part in the clustering task. On one
hand, a small mixture will provide poor SP message approximation which will propagate
over the factor graph and cause a degradation in performance. On the other hand, a large
mixture order will demand too many computational resources. Instead of reducing (5.7)
and (5.8) to a fixed order, we propose a new approach which has better accuracy while
keeping low complexity. Since we are performing Bayesian inference on a large data block,
we have many mixture reductions to perform rather than just a single reduction. Therefore,
in terms of computational complexity, it is useful to use different mixture orders for different
symbols and look at the average number of components as a measure of complexity. This new
observation is critical in achieving high accuracy and low PER while keeping computational
complexity low. We define the new mixture reduction task - Given a Tikhonov mixture f(θ),

f(θ) =
L∑
i=1

αifi(θ) (6.1)

Find the Tikhonov mixture g(θ) with the minimum number of components N

g(θ) =
N∑
j=1

βjgj(θ) (6.2)

which satisfy,

DKL(f(θ)||g(θ)) ≤ ε (6.3)

Solving this new task will guarantee that the accuracy of the approximation is upper
bounded so we can keep the PER levels low. Moreover, simulations show that the resulting
mixtures are of very small sizes. In the following section, we will show a low complexity
algorithm which finds a mixture g(θ) whose average number of mixture components is low.
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6.1 Mixture Reduction Algorithm
In this section, a mixture reduction algorithm is proposed which is suboptimal in the sense
that it does not have the minimal number of components, but finds a low order mixture
which satisfies (6.3), for any ε. The algorithm, whose details are given in pseudo-code in
Algorithm 1, uses the CMVM approach, for optimally merging a Tikhonov mixture to a
single Tikhonov distribution.

Algorithm 1 Mixture Reduction Algorithm
j ← 1
while |f(θ)|> 0 do

lead← argmax{α}
for i = 1→ |f(θ)| do

if DKL(fi(θ)||flead(θ)) ≤ ε then
idx← [idx, i]

end if
end for
βj ←

∑
i∈idx αi

gj(θ)← CMVM(
∑
i∈idx

αi

βj
fi(θ))

f(θ)← f(θ)−
∑
i∈idx αifi(θ)

j ← j + 1
end while

The input to this algorithm, f(θ), is the Tikhonov mixture (5.7) and the output Tikhonov
mixture g(θ) is a reduced version of f(θ) and approximates the next forward or backward
messages. Note that the function |f(θ)| outputs the number of Tikhonov components in the
Tikhonov mixture f(θ). The computations ofDKL(fi(θ)||flead(θ)) and CMVM(∑i∈idx

αi
βj
fi(θ))

are detailed in appendices (C) and (B). In the beginning of each iteration, the algorithm
selects the highest probability mixture component and clusters it with all the components
which are similar to it (KL sense). It then finds the next highest probability component and
performs the same until there are no components left to cluster. We will now show that for
any ε, the algorithm satisfies (6.3).

Theorem 6.1.1. (Mixture Reduction Accuracy): Let f(θ) be a Tikhonov mixture of order
L and ε be a real positive number. Then, applying the Mixture Reduction Algorithm 1 to
f(θ) using ε, produces a Tikhonov mixture g(θ), of order N which satisfies,

DKL(f(θ)||g(θ)) ≤ ε (6.4)

Proof. In the first iteration, the algorithm selects the highest probability mixture component
of (6.1) and denotes it as flead(θ). Let M0, be the set of mixture components fi(θ) selected
for clustering,

M0 = {fi(θ) |DKL(fi(θ)||flead(θ)) ≤ ε} (6.5)
and M1 be the set of mixture components which were not selected,

M1 = {fi(θ) |DKL(fi(θ)||flead(θ)) > ε} (6.6)
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Thus, ∑
i∈M0

αi
β1
DKL(fi(θ)||flead(θ)) ≤ ε (6.7)

where,
β1 =

∑
i∈M0

αi (6.8)

Using Lemma (2.3.1),

DKL

∑
i∈M0

αi
β1
fi(θ)||flead(θ)

 ≤ ε (6.9)

The algorithm then clusters all the distributions in M0 using CMVM,

g1(θ) = CMVM

∑
i∈M0

αi
β1
fi(θ)

 (6.10)

then, using Theorem (2.2.1),

DKL

∑
i∈M0

αi
β1
fi(θ)||g1(θ)

 ≤ DKL

∑
i∈M0

αi
β1
fi(θ)||flead(θ)

 (6.11)

which means that,

DKL

∑
i∈M0

αi
β1
fi(θ)||g1(θ)

 ≤ ε (6.12)

We can rewrite the mixtures f(θ) and g(θ) in the following way,

f(θ) = αM0fM0(θ) + αM1fM1(θ) (6.13)

g(θ) = β1g1(θ) + (1− β1)h(θ) (6.14)
where,

αM0 =
∑
i∈M0

αi (6.15)

αM1 =
∑
i∈M1

αi (6.16)

fMi
(θ) =

∑
j∈Mi

αj
αMi

fj(θ) (6.17)

Using (6.8),
αMi

= βi (6.18)
Therefore (6.13) and (6.14) are two mixtures of the same size and have exactly the same
coefficients, thus the KL of the probability mass functions induced by the coefficients of both
mixtures is zero. Using Lemma (2.3.3),

DKL(f(θ)||g(θ)) ≤ β1DKL(fM0(θ)||g1(θ) + (1− β1)DKL(fM1(θ)||h(θ)) (6.19)
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using (6.11) we get,

DKL(f(θ)||g(θ)) ≤ β1ε+ (1− β1)DKL(fM1(θ)||h(θ)) (6.20)

If we find a Tikhonov mixture h(θ) ,which satisfies,

DKL(fM1(θ)||h(θ)) ≤ ε (6.21)

then we will prove the theorem. But (6.21) is exactly the same as the original problem,
thus applying the same clustering steps as described earlier on the new mixture fM1(θ) will
ultimately satisfy,

DKL(f(θ)||g(θ)) ≤ ε (6.22)

6.2 Mixture Reduction As Phase Noise Tracking
Recall in Fig. 5.1, that the phase noise messages can be viewed as multiple separate phase
trajectories, then the mixture reduction algorithm can be viewed as a scheme to map the
different mixture components to different phase trajectories. The mixture reduction algo-
rithm receives a mixture describing the next step of all the trajectories and assigns it to a
specific trajectory, thus we are able to accurately track all the hypotheses for all the phase
trajectories. Assuming slowly varying phase noise and high SNR, the mixture reduction
tracking loop i, θ̂ik for each trajectory can be computed in the following manner,

θ̂ik = θ̂ik−1 + |rk−1||ct|
Gk−1σ2 ( 6 rk−1 + 6 ct − θ̂ik−1) (6.23)

where, ct and Gk−1 are a soft decision of the constellation symbol and the inverse conditional
MSE for θ̂k−1, respectively. The proof for this claim is provided in appendix D. Thus the
mixture reduction is equivalent to multiple soft decision first order PLLs with adaptive loop
gains. Whenever the mixture components of the SPA message become too far apart, a split
occurs and automatically the number of tracking loops increases in order to track the new
trajectories.

6.3 Limited Order Adaptive Mixture
In the previous section, we have presented an algorithm which adaptively changes the canon-
ical model’s mixture order, with no upper bound. This enabled us to track all the significant
phase trajectories in the SP messages. However, there may be scenarios with limited com-
plexity, in which we are forced to have a limited number of mixture components, thus we
can track only a limited number of phase trajectories. If the number of significant phase
trajectories is larger than the maximum number of mixture components allowed, then we
might miss the correct trajectory. For example, if we limit the number of tracked trajectories
to one, we get an algorithm very close to a PLL. In this case whenever a split event occurs,
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we have to choose one of the trajectories and abandon the other and in case we chose the
wrong one, we experience a cycle slip. Analogously we can nickname the event of missing the
right trajectory even when more than one trajectory is available, a cycle slip. In this section,
assuming pilots are present, we propose an improvement to Algorithm 1, which provides a
solution to the missed trajectories problem. The improved algorithm still uses a mixture
canonical model for the approximation of messages in the SPA but with an additional vari-
able φfk (for backward recursions φbk ), which approximates, online, the probability that the
tracked trajectories include the correct one. This approach enables us to track phase trajec-
tories while maintaining a level of their confidence. We apply the previously used clustering
based on the KL divergence in order to select which of the components of the mixture are
going to be approximated by a Tikhonov mixture, while the rest of the components will be
ignored, but their total probabilities will be accumulated. We then use pilot symbols and φfk
in order to regain tracking if a cycle slip has occurred. This approach proves to be robust
to phase slips and provides a high level of accuracy while keeping a low computational load.
The resulting algorithm was shown, in simulations, to provide very good performance in
high phase noise level and very close to the performance of the optimal algorithm even for
mixtures of order 1,2 and 3.

6.3.1 Modified Reduction Algorithm
We denote the modification of Algorithm 1 for limited complexity, as Algorithm 2. This
algorithm selects some components from a Tikhonov mixture, f(θ) and clusters them to
an output Tikhonov mixture g(θ) of maximum order L. We initialize φf0 = 1, which means

Algorithm 2 Modified Mixture Reduction Algorithm
j ← 1
while j ≤ L or |f(θ)|> 0 do

lead← argmax{α}
for i = 1→ |f(θ)| do

if DKL(fi(θ)||flead(θ)) ≤ ε then
idx← [idx, i]

end if
end for
βj ←

∑
i∈idx αi

gj(θ)← CMVM(
∑
i∈idx

αi

βj
fi(θ))

f(θ)← f(θ)−
∑
i∈idx αifi(θ)

j ← j + 1
end while
φfk ← (

∑
j βj)φ

f
k−1

that in the first received sample, for the forward recursion, there is no cycle slip. Note that
Algorithm 2, is identical to Algorithm 1 apart for the computation of φfk . For each itera-
tion, Algorithm 2, selects the most probable component in (5.7) and clusters all the mixture
components similar to it. The algorithm then removes this cluster and finds another cluster
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similarly. When there are no more components in f(θ) or the maximum allowed mixture
order is reached, the algorithm computes φfk . As discussed earlier, this variable represents
the probability that a cycle slip has not occurred. The algorithm sums up the probabilities
of the clustered components in f(θ) and multiplies that with φfk−1 to get φfk . Suppose we
have clustered all the components in f(θ), then φfk−1 will be equal to φfk . That suggests that
the probability that a cycle slip has occurred before sample k − 1 is the same as for sample
k. This is in agreement with the fact that no trajectories were ignored at the reduction from
k − 1 to k. For low enough ε , φfk is a good approximation of that probability.

6.3.2 Recovering From Cycle Slips
In this section, we propose to use φfk−1, the probability that a cycle has not occurred, and
the information conveyed by pilots in order to combat cycle slips. In case of a cycle slip, the
phase message estimator based on the tracked trajectories is useless and we need to find a
better estimation of the phase message. We propose to estimate the message using only the
pilot symbol, pd(θk−1). However, if a cycle slip has not occurred, then estimating the phase
message based only on the pilot symbol might damage our tracking. Therefore, once a pilot
symbol arrives, we will average the two proposed estimators according to φfk−1,

qf (θk−1) = φfk−1pf (θk−1) + (1− φfk−1) 1
2π (6.24)

If a cycle slip has occurred and φfk−1 is low, then the pilot will, in high probability, correct
the tracking. We present the proposed approach in pesudo-code in Algorithm (3).

Algorithm 3 Forward Message Computation with Cycle Slip Recovery
pf (θ0)← 1

2π
φf0 ← 1
k ← 1
while k ≤ K do

Compute pd(θk−1)
if ck−1 is a pilot then

qf (θk−1)← φfk−1pf (θk−1) + (1− φfk−1) 1
2π

t← 1
else

qf (θk−1)← pf (θk−1)
t← φfk−1

end if
p̃f (θk)←

∫ 2π
0 qf (θk−1)pd(θk−1)p∆(θk − θk−1)dθk−1

[pf (θk), φfk ]← Algorithm2(p̃f (θk), t)
k ← k + 1

end while

26



6.4 Computation of Pu(ck)

As discussed earlier, after computing the forward and backward messages, the next step
of the SP algorithm is to compute Pu(ck). These messages describe the LLR of a code
symbol based on the channel part of the factor graph. These messages are sent to the LDPC
decoder and the correct approximation of these messages is crucial for the decoding of the
LDPC. When using Algorithm 1 for the computation of the forward and backward messages,
we use the reduced mixtures with (3.20) and analytically compute the message. However,
when using a limited order mixture and Algorithm 2 with the cycle slip recovery method
in Algorithm 3, we use φfk and φbk in order to better the estimation of the messages. Thus
Pu(ck) is a weighted summation of four components which can be interpreted as conditioning
on the probability that a phase slip has occurred for each recursion (forward and backward).
This will ensure that the computation of Pu(ck) is based on the most reliable phase posterior
estimations, even if a phase slip has occurred in a single recursion (forward or backward).
We insert the mixture (6.24) into (3.20),

Pu(ck) ∝
∫ 2π

0
qf (θk)qb(θk)ek(ck, θk)dθk (6.25)

where qf (θk) and qb(θk) are defined in Algorithm 3. We decompose the computation to
a summation of four components,

Pu(ck) ∝ A+B + C +D (6.26)

where
A = φfkφ

b
k

∫ 2π

0
pf (θk)pb(θk)ek(ck, θk)dθk (6.27)

B = φfk(1− φbk)
∫ 2π

0
pf (θk)

1
2πek(ck, θk)dθk (6.28)

C = (1− φfk)φbk
∫ 2π

0

1
2πpb(θk)ek(ck, θk)dθk (6.29)

D = (1− φbf )(1− φbk)
∫ 2π

0

1
2π

1
2πek(ck, θk)dθk (6.30)

We will detail the computation of A, but the same applies to the other components of (6.26).
We use the mixture form defined in (5.1) and (5.2).

We define the following,
Zψ = zk,fi + zk,bj + rkc

∗
k

σ2 (6.31)

and get,

A =
Nk
f∑

i=1

Nk
b∑

j=1
αk,fi αk,bj

I0(|Zψ|)
2πI0(|zk,fi |)I0(|zk,bj |)

(6.32)
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When implementing the algorithm in log domain, we can simplify (6.32), by using (B.6),

log
 I0(|Zψ|)

2πI0(|zk,fi |)I0(|zk,bj |)

 ≈ |Zψ|−|zk,fi |−|zk,bj |−1
2 log

 |Zψ|
|zk,fi ||z

k,b
j |

 (6.33)

and for large enough |zk,fi | and |zk,bj |

log
 I0(|Zψ|)

2πI0(|zk,fi |)I0(|zk,bj |)

 ≈ |Zψ|−|zk,fi |−|zk,bj | (6.34)
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Chapter 7

Complexity

In this section we will detail the computational complexity of the proposed algorithms and
compare the complexity to the DP and BARB algorithms. Since the mixture order changes
between symbols and LDPC iterations, we can not give an exact expression for the com-
putational complexity. Therefore, in order to assess the complexity of the algorithms, we
denote the average number of components in the canonical model per sample, as γ(i), where
i is the index of the LDPC iteration. γ(i), decreases in consecutive LDPC iterations due
to the fact that the LDPC decoder provides better soft information on the symbols thus
resolving ambiguities and decreasing the required number of components in the mixture.
This value, γ(i), depends mainly on the number of ambiguities that the phase estimation
algorithm suffers. These ambiguities are a function of the SNR, phase noise variance and
algorithmic design parameters such as the number of LDPC iteration, KL threshold - ε and
the pilot pattern.

The significant difference in computational complexity between the DP and the mixture
based algorithms stems from the fact that multi modal SPA messages are not well charac-
terized by a single Tikhonov and the DP algorithm must use many quantization levels to
accurately describe them. However, the mixture algorithm is successful in characterizing
these messages using few mixture parameters and this difference is very significant as the
modulation order increases. The mixture algorithm starts out by approximating the forward
and backward messages using Tikhonov mixtures. These mixtures are then inserted in to
(3.17) and (3.18) to produce larger mixtures (5.7) and (5.8). Next, the mixture reduction
scheme produces a reduced mixture which is used to compute Pu(ck). On average, for a given
LDPC iteration i, the forward message, pf (θk), is a Tikhonov mixture of order γ(i). After
applying (3.17), the mixture increases to order Mγ(i) and is sent to the mixture reduction
algorithm. Also on average, the clustering algorithm performs γ(i) clustering operations
on M components. The clustered mixtures are then used to compute Pu(ck) which is a
multiplication of the forward and backward mixtures. In appendices (B) and (C), we have
described the computation of the KL divergence, DKL(fi(θ)||flead(θ)) and the application
of the CMVM operator on the clustered components - gj(θ) ← CMVM(∑i∈idx

αi
βj
fi(θ)). In

order to further reduce the complexity of the proposed algorithm, the variables representing
probabilities are stored in log domain and summation of these variables is approximated us-
ing the max operation. We also use the fact that for large x, log(I0(x)) ≈ x and approximate
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the KL divergence in (C.7) as,

DKL ≈ |z2|(1− cos(6 z1 − 6 z2)) (7.1)

There is an option to abandon the clustering altogether, and replace it by a component
selection algorithm, which maintains the specified accuracy but requires more components
in return. Now the complexity of clustering is traded against the complexity of other tasks.
The selection algorithm is a simple modification in the algorithm. Instead of using CMVM
to cluster several close components, we simply choose flead(θ) as the result of the clustering.
Recalling (6.11), we note that flead(θ) satisfies the accuracy condition and Theorem 6.1.1 still
holds. Thus we will not suffer degradation in maximum error if we use this approximation
and not CMVM. However, the mean number of mixture components will increase since we
do not perform any clustering. The CMVM operator actually reduces the KL divergence
between the original mixture and the reduced mixture to much less than ε. Therefore, when
using CMVM, the reduced mixture is much smaller than needed to satisfy the accuracy
condition. In order to get the same performance with the reduced algorithm, we need to
decrease ε and use more components. The reduced complexity is summarized in Table 7.1,
and compared to DP and BARB. Q is the number of quantization levels per constellation
symbol in the DP algorithm. We only count multiplication and LUT operations since they
are more costly than additions. We assume that the cosine operation is implemented using
a look up table.

Table 7.1: Computational load per code symbol per iteration for M-PSK constellation
DP BARB Limited Order

MULS 4Q2M2+2M2Q+6MQ+M 7M + 5 4Mγ(i)2 + 2M(γ(i) +
1)

LUT QM 3M 3Mγ(i)2 − γ(i)(2M −
1)
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Chapter 8

Numerical Results

In this section, we analyze the performance of the algorithms proposed in this paper. The
performance metrics of a decoding scheme is comprised of two parameters - the Packet/Bit
Error Rate (PER/BER) and the computational complexity. We use the DP algorithm as a
benchmark for the lowest achievable PER and the algorithm proposed in [7], denoted before
as BARB as a benchmark for a state of the art low complexity scheme. The phase noise
model used in all the simulations is a Wiener process and the DP algorithm was simulated
using 16 quantization levels between two constellation points. Also, note that the simulation
results presented in this paper use an MPSK constellation but the algorithm can also be
applied, with small changes, to QAM or any other constellation.

In Fig. 8.1 and 8.2, we show the BER and PER results for an 8PSK constellation with
an LDPC code of length 4608 with code rate 0.89. We chose σ∆ = 0.05[rads/symbol] and a
single pilot was inserted every 20 symbols.

The algorithms simulated were the unlimited order algorithm, the limited order algorithm
with varying mixture orders (1,2 and 3) and the reduced complexity algorithm of Order 3
(denoted Reduced Complexity Size 3). We can see that the unlimited mixture, the limited
order mixtures of order 2 and 3 and the reduced complexity algorithm provide almost iden-
tical results, which are close to the performance of the DP algorithm. On the other hand,
the BARB algorithm has significant degradation with respect to all the algorithms. We note
that a mixture with only one component can not describe the phase trajectory well enough
to have PER levels like DP, but this algorithm is still better than BARB.
In Figs. 8.3,8.4 and 8.5 we show the PER results for a BPSK,QPSK and 32PSK con-
stellations respectively with the same code used earlier. For the BPSK and QPSK sce-
narios we simulated the phase noise using σ∆ = 0.1[rads/symbol] and for 32PSK we used
σ∆ = 0.01[rads/symbol]. A single pilot was inserted according to the pilot frequency detailed
in each figure’s caption.

We can see that the mixture of order 2 is close to the performance of the optimal algo-
rithm, even when very few pilots are present and the code rate and constellation order are
high. One should also observe that for the 32PSK scenario, the BARB algorithm demon-
strates a high error floor. This is because of the large phase noise variance and large spacing
between pilots which causes the SPA messages to become uniform and thus do not provide
information for the LDPC decoder. The high code rate amplifies this problem. However,
the limited algorithm with only one Tikhonov component performs almost as well as the DP
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Figure 8.1: Bit Error Rate error rate - 8PSK , σ∆ = 0.05, Pilot Frequency = 0.05
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Figure 8.2: Packet Error Rate error rate - 8PSK , σ∆ = 0.05, Pilot Frequency = 0.05
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Figure 8.3: Packet Error Rate error rate - BPSK , σ∆ = 0.1, Pilot Frequency = 0.0125
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Figure 8.4: Packet Error Rate error rate - QPSK , σ∆ = 0.1, Pilot Frequency = 0.05
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Figure 8.5: Packet error rate - 32PSK, σ∆ = 0.01, Pilot Frequency = 0.025

algorithm. This is due to the cycle slip recovery procedure we have presented earlier which
enables the limited algorithm to regain tracking even after missing the correct trajectory.
In Fig. 8.6 we present the average number of mixture components, for different SNR and
LDPC iterations for ε = 4. It can be seen that for the first iteration, many components are
needed since there is a high level of phase ambiguity. As the iterations progress the LDPC
decoder sends better soft information for the code symbols, resolving these ambiguities.
Therefore, the average number of mixture components becomes closer to 1.

In Fig. 8.7 we present the average number of mixture components for the reduced com-
plexity algorithm, for different SNR and LDPC iterations for ε = 1. We chose ε to be lower
since we do not use the CMVM operator as described earlier. As shown in this figure, the
mean number of components is larger than for ε = 4 but the overall complexity is still man-
ageable. In Table (8.1), the computational complexity of the reduced complexity algorithm
is compared to the DP and BARB algorithms. We use the mean mixture in Fig. 8.7 as γ. We
can see that the algorithms proposed in this contribution, have extremely less computational
complexity than DP, while having comparable PER levels to it.

It should be noted, that the PER performance of the Unlimited algorithm, for small
enough ε, is as good as the PER performance of the DP algorithm because the mixture
algorithm tracks all the significant trajectories with no limit on the mixture order. The
choice of the threshold ε in the algorithm is according to the level of distortion allowed for
the reduced mixture with respect to the original mixture. If ε is very close to zero, then there
will not be any components close enough and the mixture will not be reduced. Therefore,
there is a tradeoff between complexity and accuracy in the selection of this parameter. This
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Table 8.1: Simulation Results - Computational load per code symbol for 8PSK constellation
at Eb

N0
= 8dB

Algorithm DP BARB Reduced Complexity,
Order 3

Iteration Constant for all itera-
tions

Constant 1 2 3 4

MULS 68360 61 312 292 273 238
LUT 128 24 147 134 123 102
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Figure 8.8: 8PSK Mean Number of Tikhonov Mixture Components - Unlimited Algorithm

tradeoff is illustrated in Fig. 8.8, where we have plotted the mean mixture order for the
unlimited algorithm using ε = 1 and ε = 4. It should be noted that for these values and
chosen SNRs, the unlimited algorithm has the same PER levels for both ε. However, choosing
ε = 15 with the same algorithm will increase the PER. Therefore, choosing the threshold
too low might increase the mixture order with no actual need.
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Chapter 9

Summary and Conclusions

In this work we have presented a new low complexity approach for joint decoding and esti-
mation of LDPC coded communications in phase noise channels. The proposed algorithms
are based on the approximation of SPA messages using Tikhonov mixture canonical models.
We have presented an innovative approach for mixture dimension reduction which does not
attempt to find a reduced mixture of fixed order but an adaptive order. Furthermore, we
have presented a dimension reduction algorithm which is mathematically proven to provide
a reduced order mixture whose KL divergence to the original mixture is upper bounded by
an arbitrary threshold.

The decoding schemes proposed in this contribution are shown via simulations to have
PER levels very close to the optimal algorithm (DP), even for very low mixture order. We
have also introduced several approximations to the mixture algorithms which significantly
reduce their complexity. These approximations cause a slight increase in the number of
mixture components needed for optimal performance but the resulting mixture order is still
very low.

We have shown that the estimation algorithm can be viewed as trajectory tracking, thus
enabling the development of the mixture reduction and clustering algorithms which can be
viewed as PLLs. It has been shown that the process of hypothesis expansion followed by
clustering is equivalent to a sophisticated tracker which can track most of the multiple hy-
potheses of possible phase trajectories. Occasionally, the number of hypotheses grows, and
more options for phase trajectories emerge. Each such event causes the tracker to create an-
other tracking loop. We have shown, as an approximation, that the tracking of each isolated
phase trajectory is equivalent to a PLL and a split event is equivalent to a point in time when
a phase slip may happen. We have proposed an algorithm to combat these events, which
has shown via simulations to perform very well. All this has lead to a better understanding
of tracking problems using Bayesian methods.

An interesting topic for future study is to develop a mathematical model for computing
the mean number of mixture components for given channel conditions and operating points.
This will enable the system designer to pre-allocate memory for the estimation algorithm
without taking spare space.
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Appendix A

Proof of Theorem 2.2.1

Let f(θ) be any circular distribution defined on [0, 2π) and g(θ) a Tikhonov distribution.

g(θ) = eRe[κe
−j(θ−µ)]

2πI0(κ) (A.1)

We wish to find,
[µ∗, κ∗] = argmin

µ,κ
DKL(f ||g) (A.2)

According to the definition of the KL divergence,

DKL(f ||g) = −h(f)−
∫ 2π

0
f(θ) log g(θ)dθ (A.3)

where the differential entropy of the circular distribution f(θ), h(f) does not affect the
optimization,

[µ∗, κ∗] = argmax
µ,κ

∫ 2π

0
f(θ) log g(θ)dθ (A.4)

After the insertion of the Tikhonov form into (A.4), we get

[µ∗, κ∗] = argmax
µ,κ

∫ 2π

0
f(θ)Re[κe−j(θ−µ)]dθ − log 2πI0(κ) (A.5)

Rewriting (A.5) as an expectation and maximizing over µ only,

µ∗ = argmax
µ

κE(Re[e−j(θ−µ)]) (A.6)

Using the linearity of the expectation and real operators,

µ∗ = argmax
µ

κRe[E(ej(θ−µ))] (A.7)

We can view (A.7) as an inner product operation and therefore, the maximal value of µ is
obtained, according to the Cauchy-Schwartz inequality, for

µ∗ = 6 E(ej(θ)) (A.8)
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Now we move on to finding the optimal κ, using the fact that we found the optimal µ.
For µ∗, the optimal g(θ) needs to satisfy

∂D(f ||g)
∂κ

= 0 (A.9)

After applying the partial derivative to (A.5), and using

dI0(κ)
dκ

= I1(κ)
I0(κ) (A.10)

We get,
E(Re[e−j(θ−µ∗)]) = I1(κ∗)

I0(κ∗) (A.11)

Recalling (2.1) and (2.2), we get that the optimal Tikhonov distribution g(θ) is given by
matching its circular mean and variance to the circular mean and circular variance of the
distribution f(θ).
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Appendix B

Using The CMVM Operator to Cluster
Tikhonov Mixture Components

In algorithms 1 & 2, at each clustering iteration, a set J of mixture components indices
of the input Tikhonov mixture (6.1) is selected. The corresponding mixture components
are clustered using the CMVM operator. In this appendix we will explicitly compute the
application of the CMVM operator and introduce several approximations to speed up the
computational complexity. For simplicity, assume that the mixture components in the set J
are,

fJ(θk) =
|J |∑
l∈J

αl
eRe[Zle

−jθk ]

2πI0(|Zl|)
(B.1)

Using Theorem (2.2.1) and skipping the algebraic details, the CMVM operator for (B.1),
is:

CMVM(fJ(θk)) = eRe[Z
f
k
e−jθk ]

2πI0(|Zf
k |)

(B.2)

where
Zf
k = k̂ejµ̂ (B.3)

and

µ̂ = arg
|J |∑
l∈J

αl
I1(|Zl|)
I0(|Zl|)

ej arg(Zl) (B.4)

1
2k̂

= 1−
|J |∑
l∈J

αl
I1(|Zl|)
I0(|Zl|)

Re[ej(µ̂−arg(Zl))] (B.5)

Since implementing a modified bessel function is computationally prohibitive, we present
the following

approximation,
log(I0(k)) ≈ k − 1

2 log(k)− 1
2 log(2π) (B.6)

which holds for k > 2, i.e. reasonably narrow distributions.
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Using the following relation,
I1(x) = dI0(x)

dx
(B.7)

We find that,
I1(k)
I0(k) = d

dk
(log(I0(k))) (B.8)

Therefore
I1(k)
I0(k) ≈ 1− 1

2k (B.9)

Thus, the approximated versions of (B.5) and (B.4) are

µ̂ = arg[
|J |∑
l∈J

αl(1−
1

2|Zl|
)ej arg(Zl)] (B.10)

1
2k̂

= 1−
|J |∑
l∈J

αl(1−
1

2|Zl|
) cos(µ̂− arg(Zl)) (B.11)

We also use the approximation for the modified bessel function in the computation of αl.
For a small enough ε, cos(µ̂ − arg(Zl)) ≈ 1, thus one can further reduce the complexity of
(B.11)

1
k̂

=
|J |∑
l∈J

αl
1
|Zl|

(B.12)

which coincides with the computation of a variance of a Gaussian mixture.
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Appendix C

Computation of the KL divergence
between two Tikhonov Distributions

In this section we will provide the computation of the KL divergence between two Tikhonov
distributions, which is a major part of both mixture reduction algorithms. We will also
provide approximations used to better the computational complexity of this computation.
Suppose two Tikhonov distributions g1(θ) and g2(θ), where

g1(θ) = eRe[z1e
−jθ]

2πI0(|z1|)
(C.1)

g2(θ) = eRe[z2e
−jθ]

2πI0(|z2|)
(C.2)

We wish to compute the following KL divergence,

DKL(g1(θ)||g2(θ)) (C.3)

which is,

DKL =
∫ 2π

0
g1(θ) log(e

Re[z1e−jθ]I0(|z2|)
eRe[z2e−jθ]I0(|z1|)

)dθ (C.4)

Thus,
DKL = log(I0(|z2|)

I0(|z1|)
) +

∫ 2π

0
g1(θ)(Re[z1e

−jθ]−Re[z2e
−jθ])dθ (C.5)

After some algebraic manipulations, we get

DKL = log(I0(|z2|)
I0(|z1|)

) + I1(|z1|)
I0(|z1|)

(|z1|−|z2|cos(6 z1 − 6 z2)) (C.6)

Using (B.9) and (B.6) we get

DKL ≈ |z2|(1− cos( 6 z1 − 6 z2))− 1
2 log( |z2|

|z1|
) + |z2|

2|z1|
cos(6 z1 − 6 z2) (C.7)
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Appendix D

Proof of Theorem 6.2

In this section we will prove the claim presented in section 6.2, that under certain channel
conditions, the mixture reduction algorithms can be viewed as multiple PLLs tracking the
different phase trajectories. For reasons of simplicity, will only show the case where the
mixture reduction algorithm converges to a single PLL (the generalization for more than one
PLL is trivial, as long as there are no splits). As described earlier, we model the forward
messages as Tikhonov mixtures. Suppose the mth component is,

pmf (θk−1) = eRe[z
k−1,f
m e−jθk−1 ]

2πI0(|zk−1,f
m |)

(D.1)

then using (3.17), we get a Tikhonov mixture f(θk),

f(θk) =
M∑
i=1

αifi(θk) (D.2)

where,

fi(θk) = eRe[z̃
k−1,f
m,i e−jθk ]

2πI0(|z̃k−1,f
m,i |)

(D.3)

z̃k−1,f
m,i =

(zk−1,f
m + rk−1x

∗
i

σ2 )
1 + σ2

∆|(z
k−1,f
m + rk−1x

∗
i

σ2 )|
(D.4)

and xi is the ith constellation symbol. We insert (D.2) into the mixture reduction algo-
rithms. Assuming slowly varying phase noise and high SNR, such that the mixture reduction
will cluster all the mixture components, with non negligible probability, to one Tikhonov dis-
tribution. Then, the circular mean, θ̂k, of the clustered Tikhonov distribution is computed
according to,

θ̂k = 6 E(ejθk) (D.5)

where the expectation is over the distribution f(θk). We note that for every complex

43



valued scalar z, the following holds

6 z = =(log z) (D.6)

where = denotes the imaginary part of a complex scalar. If we apply (D.6) to (D.5) we
get,

θ̂k = =
log

M∑
i=1

αi
z̃k−1,f
m,i

|z̃k−1,f
m,i |

 (D.7)

which can be rewritten as,

θ̂k = =
log

M∑
i=1

αi
zk−1,f
m + rk−1x

∗
i

σ2

|zk−1,f
m + rk−1x

∗
i

σ2 |

 (D.8)

we denote,
Gk−1 = |zk−1,f

m + rk−1x
∗
i

σ2 | (D.9)

and assume that Gk−1, the conditional causal MSE of the phase estimation under mixture
component fi(θk), is constant for all significant components. Then,

θ̂k ≈ θ̂k−1 + =
(

log
(

1 + rk−1

Gk−1z
k−1,f
m σ2

(
M∑
i=1

αix
∗
i

)))
(D.10)

where,
θ̂k−1 = 6 zk−1,f

m (D.11)
We will define csoft as the soft decision symbol using the significant components,

csoft =
M∑
i=1

αixi (D.12)

Since we assume high SNR and small phase noise variance, then the tracking conditional
MSE will be low, i.e |zk,f1 | will be high. Using the fact that for small angles φ,

6 (1 + φ) ≈ =(φ) (D.13)
Therefore,

θ̂k ≈ θ̂k−1 + =(
rk−1c

∗
soft

Gk−1z
k−1,f
m σ2

) (D.14)

Which, again for small angles x, sin(x) ≈ x,

θ̂k ≈ θ̂k−1 +
|rk−1||c∗soft|

Gk−1|zk−1,f
m |σ2

(6 rk−1 + 6 c∗soft − θ̂k−1) (D.15)
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  תקציר
  

  

בתיזה זו מוצג אלגוריתם איטרטיבי בעל סיבוכיות נמוכה לפענוח תקשורת מקודדת בערוצים עם רעש 

המשויכים  םכאשר הודעות של צמתי Sum & Productפאזה חזק. האלגוריתם מבוסס על אלגוריתם 

  .Tikhonovרעש הפאזה ממודלים כמודל עירוב ל

 ספוננציאליהעירוב באופן אקמודל  את סדר מגדילה Sum & Productמאחר והסקה בייסיאנית כמו 

 ם להורדתאלגורית . אנו מציעים, נדרש אלגוריתם להורדת מימדיותמהודעה אחת לבאה אחריה

חסומה מלעיל ע"י סף מטריקת חוסר הדימיון  מימדיות אשר מוצא מודל עירוב קטן יותר שעבורו

אשר מוצאת את  יל, אנו מספקים שיטה לאשכול אופטיממימדיותנתון. כחלק מאלגוריתם הורדת ה

אנו מציגים שיטה  כמו כן, מעגלי. לכל פילוג ,Kullback-Lieblerר , במובן הקרוב ביות הפילוג טיכונוב

  ועוד שיטות להורדת סיבוכיות. להגבלת סדר מודל העירוב

ביצועים  המוצע אשר מראות בור האלגוריתםוניתוח סיבוכיות עתוצאות סימולציות  גיםיאנו מצ

ביצועים  לות סיבוכיות נמוכה. האלגוריתם הציגבע מתקדמות ביותרטובים יותר מאשר שיטות 

  עליונים עבור קצב קוד גבוה, רעש פאזה חזק, קונסטלציות גבוהות ומעט פיילוטים.

למעקב אחר שקול  Sum & Productלהודעות  Tikhonovמראים כי קירוב מודל עירוב לבסוף, אנו 

  חכמים.(PLL)  למספר חוגים עוקבי פאזה במידה מסויימתמספר מסלולי רעש פאזה אפשריים, או 
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