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ABSTRACT
Self interference in a communications system occurs when
there is electromagnetic coupling between the transmission
(TX) and reception (RX) radio frequency (RF) chains or an-
tennas. This coupling degrades the system’s RX sensitivity to
incoming signals. In this paper a low complexity technique
for self interference cancellation in multi channel systems is
presented. In this scenario, multiple carriers at overlapping
arbitrary bandwidths and powers are simultaneously received
and transmitted by the system. Traditional algorithms for
self-interference mitigation based on Recursive Least Squares
(RLS) and Least Mean Squares (LMS), fail to provide suf-
ficient rejection since the incoming signal is not spectrally
white, which is critical for their performance. The proposed
algorithm mitigates the interference by modeling the incom-
ing multi carrier signal as an Auto-Regressive (AR) process
and jointly estimates the AR parameters and self interference.
The resulting algorithm can be implemented using a low com-
plexity architecture comprised of only two RLS modules. The
main advantage of the proposed technique over RLS and LMS
is the robustness to the spectrum of arbitrary incoming sig-
nals and improved rejection levels of over 10dB. All of this is
achieved while not compromising on low latency constraints.

1. INTRODUCTION

Full duplex communications has the potential to improve the
spectral efficiency of wireless communications and become a
significant driver of future 5G communication systems. In full
duplex communications, the transmitter and receiver share the
same frequency band, thus theoretically increasing the spec-
tral efficiency by a factor of two. However, RF coupling be-
tween TX and RX causes self interference which is added to
the signals incoming to the RX. This effect can also happen
in Frequency Division Duplex (FDD) communications, when
the TX’s Power Amplifier (PA) is close to saturation and inter-
modulation (IMD) components of the transmission leak to the
RX frequency band of interest. We denote the signals incom-
ing from users as Uplink (UL) and the system’s transmission
as Downlink (DL).

There are several approaches to counter the effect of
self interference, they are generally composed of two steps.

Firstly, analog domain mitigation (antenna nulling or sharp
analog filters) reduces the interference to a level which does
not saturate the Analog to Digital Converter (ADC). Next,
digital signal processing algorithms counter the residual
noise. A comprehensive summary on solutions and algo-
rithms in both analog and digital domains can be found in
[1, 2, 3].

Digital domain cancellation can be generally divided to
two categories: ones using auxiliary path ADC [4] and those
which do not [5]. The signal after Digital to Analog Con-
verter (DAC), in the TX RF path, passes through a PA and
other active devices which can create non linear IMD’s which
are hard to model. The auxiliary ADC, sampling the signal
as close as possible to the TX antenna, records an accurate
replica of the TX signal, which can later be used for leak-
age filter estimation. Solutions which do not use an auxiliary
ADC and thus save hardware cost, usually use some sort of
polynomial approximation of the PA’s IMD’s.

In [4] an auxiliary receiver measures the DL’s frequency
response and a Least Squares (LS) estimation is performed to
recover the leakage filter in frequency domain. Next, the filter
is used to cancel out the self-interference signal. In [5] there
is no auxiliary ADC path and modeling of the IMD is pro-
posed using 2nd-order nonlinear terms. A training sequence
is transmitted by the system when there is no RX reception
and the self interference filter is estimated using LS. This as-
sumption is not useful in practice, since the users can transmit
at any time, in particular in cellular communications.

Most algorithms for digital domain cancellation use RLS
or LMS since these algorithms have low computational com-
plexity and they perform fairly well when the UL and DL are
spectrally white. In fact, performance of LS, RLS and LMS
will be as good as Maximum Likelihood (ML) only when
the UL is either spectrally white or its power is significantly
lower than the self interference. However, in practical appli-
cation and in particular multi channel communications, mul-
tiple carriers at arbitrary bandwidths and power levels coexist
at the UL thus its spectrum is non-white and its power might
be comparable to the leakage.

In this paper we propose a novel algorithm for interfer-
ence cancellation which is more robust to the spectrum shape
of the DL and UL than RLS, LMS and LS. The algorithm



is based on the observation that the UL signal can be mod-
eled as an AR process. Based on this, we devise a self in-
terference cancellation algorithm utilizing the special charac-
teristics of the AR process. In subsequent sections, we will
show simulations of scenarios where LS, RLS and LMS fail
to provide sufficient interference rejection, while our novel
algorithm provides dramatically better interference rejection.

2. SYSTEM MODEL

In this section we describe the mathematical model for our
system. Suppose we have a cellular base station (BS) and
in order to demodulate the UL, the BS needs to remove the
interference created by its DL. We denote the discrete time
domain DL signal as x[n].

We describe the signal received in the RX after ADC as,

y = Xh + s (1)

Where s is the UL modeled as a size N proper complex
Gaussian vector, h is the self-interference filter of length M
and X is an N xM tall Toeplitz matrix (N � M) with Xi j =

x[i+ j] for 0 ≤ i < N and 0 ≤ j < M . The matrix multiplica-
tion Xh, is the equivalent of convolving the DL with an FIR
filter: h (neglecting boundary effects).

3. MAXIMUM LIKELIHOOD ESTIMATION OF THE
SELF INTERFERENCE FILTER

Our main objective is to recover the UL signal - s, from the
RX ADC measurements y and TX signal X . We propose to
use an ML estimation of the self interference filter ĥ and sub-
tract it from y.

ŝ = y − Xĥ (2)

where ŝ and ĥ are the estimations of the UL and the self
interference filter respectively.

The ML solution for the leakage filter finds the vector h
which maximizes the log likelihood function,

log
(
p(y |h; Σ)

)
∝ − log(det Σ) −

(
y − Xh

)?
Σ
−1

(
y − Xh

)
(3)

where Σ is the covariance matrix of the vector s and ()? is
the matrix conjugate transpose operator.

If Σ was known a-priori, then maximization of (3) would
reduce to a closed form solution (Weighted Least Squares
(WLS)). Moreover, if s was an i.i.d vector, then the LS and
RLS solutions would yield the same performance as ML.

However, s has unknown statistics since it is the combina-
tion of all the active users in a given cell sector. All users are
transmitting in different band-widths, center frequencies and
power levels, in various formats like LTE, GSM and CDMA.

3.1. Stochastic Modeling of the UL

In the multi channel scenario, the UL signal is comprised of
multiple carriers with different bandwidths and power levels.
For example, several LTE and CDMA carriers from multiple
users. Therefore, the UL is clearly not spectrally white and
thus RLS and LMS will have a significant performance loss
compared to ML that maximizes (3).

Since the objective is to maximize (3), then the UL’s PSD,
assuming the UL is Wide Sense Stationary (WSS), is of inter-
est. The Auto-Regressive Moving Average (ARMA) model
defines a dense set in the class of all continuous PSDs ac-
cording to section 3.2 in [6]. These processes are modeled as
the output of a stable LTI system with zero mean white Gaus-
sian input, where the frequency response of the system can
be written as a division of two polynomials. Therefore, the
second order statistics of an ARMA process can approximate
most well-behaved WSS processes and in particular the UL.

However, ARMA processes are harder to work with than
AR. Fortunately, causal and invertible ARMA processes can
be written as AR process of infinite order [7]. Therefore, we
suggest to approximate the UL signal s, as a complex valued
autoregressive process of order p.

s[n] =
p∑

k=1
gk s[n − k] + u[n] (4)

where g is an unknown vector of size p, u[n] is a
circularly-symmetric complex normal i.i.d process with zero
mean and variance σ2

u . The choice of p determines the ap-
proximation’s accuracy, and it effects the model’s frequency
selectivity.

Equivalently, (4) can be written in matrix form,

u = Ws (5)

where W is a square Toeplitz whitening matrix with di-
mension N , which is the size of vectors u and s

W =

©­­­­­«
1 −g1 −g2 ... −gp 0 0 ... 0
0 1 −g1 −g2 ... −gp 0 ... 0
... ... ... ... ... ... ... ... ...
0 0 0 0 ... 0 0 1 −g1
0 0 0 0 ... 0 0 0 1

ª®®®®®¬
(6)

We notice that due to (5), the matrix Σ can be written as,

Σ = E
(
(W−1)?uu?W−1

)
(7)

Since u is an i.i.d vector, the inverse is

Σ
−1 =

W?W
σ2
u

(8)

We propose to use a Generalized Likelihood Ratio (GLRT)
approach for solving the ML problem. We will find the vector



g which maximizes (3), and use it to compute the posterior.
Equivalently, we can look at this approach as jointly maxi-
mizing (3),

ĥ, ĝ = arg max
h,g

p(y |h; W) (9)

4. ALTERNATING MINIMIZATION ALGORITHM

In this section, an algorithm which approximately solves the
ML problem defined in (9) is proposed. Since the optimiza-
tion is also done on the covariance’s parameters, the problem
does not have a simple closed form solution and a unique al-
gorithm is developed. We use alternating minimization of the
likelihood function and converge on a joint solution for both
filters.

Note that, det A−1 = 1
det A , therefore (3) becomes,

log
(
p(y |h; Σ)

)
∝ log(det W?W) −

(
y − Xh

)? W?W
σ2
u

(
y − Xh

)
(10)

Since W is a matrix with ones across its main diagonal
and assuming large enough vectors (neglecting boundary ef-
fects), det W = 1. Moreover, det W?W = det W? det W , Thus
det W?W = 1

ĥ, ĝ = arg min
h,g

(
y − Xh

)?
W?W

(
y − Xh

)
(11)

We minimize (11) using alternating minimization [8].
That is, we set hk=0 and gk=0 to some initial values, where k
is the iteration index for the alternating minimization. Then
we fix hk and perform a minimization for gk+1. Then we fix
gk+1 to the new value and minimize according to hk+1. We
repeat this procedure until the difference between estimated
filters in subsequent iterations is smaller than a predefined
value.

4.1. Minimization over the self interference filter

We use the previous estimation of the AR filter taps, gk which
define the matrix Wk and minimize (11) over the vector h.

hk+1 = (X?W?
k WkX + λh IM )−1X?W?

k Wk y (12)

where IM is an M by M identity matrix and λh is a regular-
ization factor added to increase robustness of the estimation.

Note that (12) is the WLS solution to the ML problem,
when the covariance matrix is known. This result has the fol-
lowing interpretation: passing the DL and UL signals through
a whitening filter and performing LS estimation of the self in-
terference filter.

4.2. Minimization over the whitening filter

In the second step of each iteration, we use the previous es-
timation of the self interference filter, hk and minimize (11)
over the vector g.

We define the following residual vector:

ek = y − Xhk (13)

Plugging (13) into (11)

gk+1 = arg min
g



Wek


2

(14)

Since W is a Toeplitz matrix dependent on g and the ma-
trix multiplication in (14) is equivalent to a convolution be-
tween [1,−g] and ek , we can rewrite (14) as,

gk+1 = arg min
g





Ek

(
1
−g

)



2
(15)

where Ek is a Toeplitz matrix defined as,

Ek =
©­«

ek(N) ek(N − 1) ... ek(N − p)
ek(N − 1) ek(N − 2) ... ek(N − (p + 1))

... ... ... ...

ª®¬ (16)

where ek(i) is the i’th element in the vector ek .
Plugging (16) into (15) and re-arranging we get,

gk+1 = arg min
g




ek − Ẽkg



2

(17)

where Ẽk is defined as,

Ẽk =
©­«
ek(N − 1) ek(N − 2) ... ek(N − p)
ek(N − 2) ek(N − 3) ... ek(N − (p + 1))

... ... ... ...

ª®¬ (18)

We notice that (17) can be solved using LS and the solu-
tion is,

gk+1 = (Ẽk
?Ẽk + λg IM )−1Ẽk

?ek (19)

where λg is a regularization factor added to increase ro-
bustness of the estimation.

We notice that (19) is equivalent to the Yule-Walker solu-
tion for the AR parameters estimation.



5. LOW COMPLEXITY RLS IMPLEMENTATION

The algorithm derived above works on a batch but can be
made sequential. Since all the minimizations above can be
described as LS problems, we can convert them to RLS and
thus provide a sequential, real time solution. Note that this
solution is approximate, since LS estimation is done in each
of the iterations we described in the previous section.

Moreover, (12) and (19) incorporate the regularization
terms in the LS solution, to improve robustness to low power
DL scenarios. These terms depend on the power difference
between the UL and DL and are fine tuned until adequate
performance is reached. The canonical form of RLS employs
the matrix inversion lemma to avoid explicit inversion of
the correlation matrix. However, regularization essentially
creates a full rank matrix and excludes the use of the matrix
inversion lemma. Therefore, in order to incorporate these
terms in RLS, we used the algorithm presented in [9], which
finds the matrix inverse using a line search and is essentially
an approximation of RLS, denoted as RLS-DCD.

RLS-DCD is a low complexity implementation of RLS
whose number of real multipliers is linear with the filter’s
length. In [10] there is also an FPGA implementation of this
algorithm which shows its real world value and applicability.
Since RLS-DCD has linear computational complexity, then
also our algorithm is linear with the sizes of the two filters.
This concludes that the computational complexity of our ap-
proach is much better than RLS which is quadratic with the
filter size.

The proposed algorithm, which we denote as JWRLS-
DCD (Joint Whitening RLS - DCD) can be summarized as
follows: the DL and UL signals go through a whitening filter
1 − g and then fed to an RLS-DCD module which produces
an estimate of the self interference filter. In parallel, the refer-
ence is convolved with the self interference filter estimate and
subtracted from the UL, which produces an estimate of the
UL without interference. This output is delayed by one sam-
ple and sent to another RLS-DCD module which estimates
the UL’s covariance which is basically the whitening filter.

6. SIMULATION RESULTS

In this section, the proposed algorithm’s performance is an-
alyzed using a simulation. DL and UL signals were gener-
ated by colored Gaussian processes with variable power levels
and bandwidths. Next, in order to simulate the PA’s response,
non linearity was introduced to the DL using a Hammerstein-
Weiner model [11]. For simplicity, the non linear DL was
filtered using an attenuator to simulate the RF leakage filter.
Finally, the self interference was added to the UL which was
then inputted to our algorithm. Note that JWRLS-DCD used
24 taps for both filters g and h. All the other algorithms used
24 taps for their filter estimation.

We have examined two full duplex scenarios: The first
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Fig. 1. Rejection performance of JWRLS-DCD for two
narrow-band UL with wide-band DL in full duplex.
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Fig. 2. Rejection performance of JWRLS-DCD in full duplex
near far scenario.

scenario comprises of two narrow band UL signals with equal
power and a wide band DL signal. In Fig. 1, we can see the
UL with and without interference, JWRLS-DCD, RLS, LS
and LMS. We can see that JWRLS-DCD produces an output
with better rejection of the interference than all the other al-
gorithms, some areas are even 10dB better.

The second scenario we have examined is the near-far sit-
uation, where there are two UL signals, one with higher power
and another with lower power, simulating a close proximity
user and a distant user. The challenge here is to remove the
self interference well enough so that the lower power UL is
observable and not corrupted by estimation noise around the
strong UL. We can see in Fig. 2 that JWRLS-DCD performs
significantly better than RLS and the low power UL is clearly
observable, while the other algorithms do not succeed in this
test.

7. CONCLUSIONS

In this paper, an innovative algorithm for mitigating self in-
terference which exists in full duplex communication systems
was presented. The main novelty is the AR modeling of the
UL, which enabled the development of an algorithm which
has lower computational complexity than RLS and LS while
having rejection performance much better than LS, RLS and
LMS.
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