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Motivation

Models are hungry for high quality data!
Data storage becomes cheaper.
Bottleneck: Someone needs to label the data!

Figure: Trends in training dataset sizes 1

1[AI24]
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Real World Active Learning
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Data Collection in the Wild

Out of Distribution Data
In the real world, data is collected from diverse sources.
These can be open source datasets which are not tailored to
a specific task.
Therefore, the data pool will contain Out Of Distribution
(OOD) samples.
Removing OOD samples requires expert assistance.

Test Aware Active Learning

We propose to use a small un-labelled sample from the test
distribution to minimize expert assistance and training set
selection.
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Test Aware Active Learning
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Part 1: The Stochastic Setting

Includes:
Shayovitz Shachar, and Meir Feder. "Universal active
learning via conditional mutual information minimization."
IEEE Journal on Selected Areas in Information Theory 2.2
(2021): 720-734. [SF21]
Shayovitz Shachar, and Meir Feder. "Minimax active learning
via minimal model capacity." 2019 IEEE 29th International
Workshop on Machine Learning for Signal Processing
(MLSP). IEEE, 2019 (Best paper finalist) [SF19]
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Mathematical Setup

Learning Setting
Stochastic setting:

Examples (x , y ) are drawn from some family of hypotheses
p(y |x , 𝜃) where 𝜃 ∈ Θ.
Test feature drawn from p(x)

Labeling budget of N queries.
Probabilistic learners: q (y |x).
Log-loss cost function: − log (q (y |x)).

Informal Objective

Sequentially select features based on past examples (xN , yN )
and construct a learner, q

(
y |x , xN , yN

)
, which will perform

"well".
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Active Learning Criteria

Maximum Uncertainty (MU)
x̂n = argmaxxn H

(
yn |xn, yn−1

)
.

Sensitive to noise.
Bayesian Active Learning by Disagreement (BALD)
[HHGL11]

x̂n = argmaxxn I
(
𝜃; yn |xn, yn−1

)
.

Focused on model estimation.

Main Issues
No justification for the prior, 𝜋 (𝜃).
No focus on prediction.
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Mathematical Setup

Optimal Learner
Similarly to the statistical learning approach, we would like to
find a learner q̂(y |x) which minimizes:

q̂(y |x) = argmin
q

Ep (y |x , 𝜃 ) (− log q(y |x))

Clearly this implies that q̂(y |x) = p(y |x , 𝜃) (minimal KLD).

Problem
Unfortunately, the learner has no access to the true 𝜃.
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Minimax Active Learning Formulation

Find a sequential selection strategy
{
𝜙(xt |x t−1, y t−1)

}N
t=1 which

optimizes the minimax regret to the optimal learner for a random
test point (x , y ):

R = min
{𝜙t }Nt=1

min
q

max
𝜃

E
{
log

(
p (y |x , 𝜃)

q
(
y |x , xN , yN

) )}
where xN , yN are the training examples.
The expectation is performed over the joint probability:

p
(
y , x , xN , yN |𝜃

)
= p (y |𝜃, x) ΠN

t=1p (yt |xt , 𝜃) 𝜙
(
xt |x t−1, y t−1

)
p(x)
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Minimax Active Learning Alternative Formulation

Another useful formulation is:

R = min
{𝜙t }Nt=1

min
q

max
𝜋 (𝜃 ) ∈Π

E
{
log

(
p (y |x , 𝜃)

q
(
y |x , xN , yN

) )}
where xN , yN are the training examples and Π is a set of
distributions on the random variable 𝜃.
This formulation will be useful for regularized linear regression and
Gaussian Process Classification where the prior on 𝜃 is either
regularized or explicitly given.
The expectation is performed over the joint probability:

p
(
y , x , xN , yN , 𝜃

)
= p (y |𝜃, x) ΠN

t=1p (yt |xt , 𝜃) 𝜙
(
xt |x t−1, y t−1

)
p(x)𝜋(𝜃)
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Capacity Redundancy Theorem for Active Learning

Theorem [SF19]
The minimax active learning problem is equivalent to the
following criterion:

R = min
{𝜙 (xt |x t−1,y t−1 )}Nt=1

CY ;𝜃 |X ,Y N ,X N

wherea,
CY ;𝜃 |X ,Y N ,X N = max

𝜋 (𝜃 )
I
(
Y ; 𝜃 |X ,Y N ,X N

)
and the optimal learner is:

q∗
(
y |x , xN , yN

)
=

∑︁
𝜃

p
(
𝜃 |yN , xN

)
p (y |𝜃, x)

aFor the alternative formulation, we can use 𝜋(𝜃) ∈ Π

24 / 104



Linear Regression

The linear regression hypothesis class:

y = X 𝜃 + z

Assumptions:
X ∈ Rnxd is a design matrix of n feature vectors.
y ∈ Rn is the vector of observable responses.

𝜃 ∈ Rd is the model vector.
z ∼ N

(
0, 𝜎2

In

)
.

The error covariance of the OLS solution is:

Σ−1 = 𝜎2
(
X T X

)−1
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Experimental Design

The design problem reduces to find a design matrix X which
minimizes some function of the covariance matrix: f

(
Σ−1

)
.

Extensive research over the last decade under the
mathematical field of "Optimal Experimental Design":
[Puk06]

A Optimal Design: fA (Σ) = 1
p Tr

(
Σ−1

)
D Optimal Design: fD (Σ) = det (|Σ |)−

1
d

G Optimal Design: fG (Σ) = maxdiag
(
XtestΣ

−1X T
test

)
V Optimal Design: fV (Σ) = Tr

(
XtestΣ

−1X T
test

)
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Universal Active Learning for Linear Regression

Consider the following hypothesis class:

PΘ = {p (y |x , 𝜃) |𝜃 ∈ Rd }

Each member learner defined as:

p (y |x , 𝜃) = 1
√

2𝜋𝜎2
exp

(
− 1

2𝜎2

(
y − xT 𝜃

)2
)

The model prior, 𝜋(𝜃) ∈ Π

Π =

{
𝜋(𝜃) | E (𝜃) = 0,

1
d
Tr

(
E

(
𝜃𝜃T

))
≤ 𝜎2

𝜃

}
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Universal Active Learning for Linear Regression

Theorem [SF21]
Assuming the hypothesis class, as defined in the previous
slide, then the following holds (with equality for high SNR):

R ≤ min
xn

Tr
©«E

(
XtestX T

test

) (
X T

n Xn +
𝜎2

𝜎2
𝜃

Id

)−1ª®¬
Xn and Xtest are the concatenation of the training and test
vectors respectively.

The capacity achieving prior is:

𝜃 ∼ N(0, 𝜎2
𝜃 Id )
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Universal Active Learning for Linear Regression

Closed form solution to the Active Learning problem.
This criterion is closely related to the A and V optimal design
criteria
There is no real need for online feedback in the active linear
regression problem and the training set problem can be cast
as a subset selection problem performed offline.
This problem is NP hard and thus approximate solutions are
needed.
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Gaussian Process Classification

Gaussian Process Classification (GPC) is a powerful,
non-parametric kernel-based model.

f ∼ GP (𝜇(·), k (·, ·))

y |x , f ∼ Bernoulli (Φ (fx ))

f is a function of a feature point x and is assigned a Gaussian
process prior with mean 𝜇(·) and covariance function k (·, ·).
The label y is Bernoulli distributed with probability Φ(fx ),
where Φ is the Gaussian CDF.

Problem
Direct computation of the posterior in GPC is intractable.
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Variational Inference

Variational inference is a technique used in probabilistic
modeling to approximate complex probability distributions
that are difficult or impossible to calculate exactly.
The goal of variational inference is to find an approximation,
q∗(𝜃) from a parametric family Q, to the true distribution,
p(𝜃 |zn−1), that is as close as possible to the true distribution,
but is also computationally tractable.

q∗(𝜃) = argmin
q∈Q

DKL

(
q(𝜃) | |p(𝜃 |zn−1)

)
UAL for GPC uses Expectation Propagation.
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Synthetic Data

Two dimensional feature vectors with binary labels: yellow
color indicates ’-1’ label and blue is ’+1’
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Simulation Results
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Part 2: The Individual Setting

Includes:
Shayovitz Shachar, and Meir Feder. "Active Learning for
Individual Data via Minimal Stochastic Complexity." 2022
58th Annual Allerton Conference on Communication,
Control, and Computing (Allerton). IEEE, 2022. [SF22]
Shayovitz Shachar, and Meir Feder. "Active Learning via
Predictive Normalized Maximum Likelihood Minimization," in
IEEE Transactions on Information Theory, vol. 70, no. 8,
Aug. 2024, [SF24]
Shayovitz Shachar, Koby Bibas, and Meir Feder. "Deep
Individual Active Learning: Safeguarding against
Out-of-Distribution Challenges in Neural Networks." Entropy
26.2 (2024): 129. [SBF24]

34 / 104



Active Learning Criteria

Maximum Uncertainty (MU)
x̂n = argmaxxn H

(
yn |xn, yn−1

)
.

Sensitive to noise.
Bayesian Active Learning by Disagreement (BALD)
[HHGL11]

x̂n = argmaxxn I
(
𝜃; yn |xn, yn−1

)
.

Focused on model estimation and not prediction.
Universal Active Learning (UAL) [SF21]

x̂n = argminxn I (𝜃; y |x , xn, yn).
Derived using the Capacity - Redundancy Theorem.
Takes into account the un-labelled test set.

Data assumed to follow some parametric distribution
Cannot be validated for real world data!
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Learning in Individual Setting

Assumptions
No underlying parametric distribution.
Training pool: zn = (xn, yn)
Test pair: (x , y )

x can be accessed.
y is not available (privacy preserving).

Probabilistic learners: q (y |x).
Log-loss cost function: − log (q (·|x , zn)).

Fundamental Problem
Minimizing the log-loss in the individual setting is ill-posed.
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Learning in Individual Setting

Define a hypothesis class:

PΘ = {p (y |x , 𝜃) |𝜃 ∈ Θ}

Define the learning problem:

R
(
x ; zn) = min

q
max
y∈Y

log
©«

p
(
y |x , 𝜃

)
q (y |x , zn)

ª®®¬
where p

(
y |x , 𝜃

)
∈ PΘ and the best learner is:

𝜃 = argmax
𝜃∈Θ

[
n∑︁

i=1

log p (yi |xi , 𝜃) + log p (y |x , 𝜃) + log (w (𝜃))
]
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Predictive Normalized Maximum Likelihood (pNML)

Theorem ([FF18])

The universal learner, qpNML, which minimizes R (x ; zn):

qpNML(y |x , zn) =
p

(
y |x , 𝜃

)
∑

y p
(
y |x , 𝜃

)
R

(
x ; zn) = log

∑︁
y∈Y

p
(
y |x , 𝜃

)
Note that any estimation algorithm can be used to estimate 𝜃 and the
same Theorem will hold for the respective 𝜃.
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Active Learning in Individual Setting

What is a "good" training set, zn?

Small R (x ; zn) on as many test features x as possible!

Problem
yn is not available a-priori and thus optimizing over zn is not
possible!
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Active Learning in Individual Setting

Minimizing the worst case training set

Find xn which minimize average regret for the worst case yn:

CA
n = min

xn∈Xn
max

yn∈Yn

∑︁
x

R
(
x ; zn)

Equivalently [FF18]:

Individual Active Learning (IAL)

Cn = min
xn∈Xn

max
yn∈Yn

∑︁
x

log
∑︁
y∈Y

p
(
y |x , 𝜃

(
x , y , zn) )
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Active Learning in Individual Setting

Sequential Scheme
For most hypothesis classes, the batch is exponentially hard
to solve.
A simpler approach is the sequential form:

Cn |n−1 = min
xn

max
yn

∑︁
x

log

(∑︁
y

p
(
y |x , 𝜃

))
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Active Learning in Individual Setting

In the next slides we examine IAL for different hypothesis classes:
One dimensional Barrier
Linear Regression
Gaussian Process Classification

It will be shown that IAL coincides with known class specific criteria
and thus is a unified framework for active learning!
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One Dimensional Barrier - Separable Data

The 1-dimensional barrier hypotheses class is defined as:

p(y = 1|x , 𝜃) =
{
𝛼 if x > 𝜃

1 − 𝛼 otherwise

where:
𝛼 ∈ {0, 1}
Input x ∈ [0, 1]
Output y ∈ {0, 1}
Unknown threshold 𝜃 ∈ [0, 1].

Theorem ([SF24])

For 1 dimensional linearly separable data, IAL induces a
selection policy which coincides with binary search.
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Proof Outline

The greedy IAL can be written as

Cn |n−1 = min
xn∈X

max
yn∈Y

∫
x∈X

log
∑︁
y∈Y

p
(
y |x , 𝜃n

)
dx

where y , x and 𝜃n are the test label, feature and maximum
likelihood estimation based on training and test data
respectively

𝜃n = argmax
𝜃∈Θ

p
(
yn, y |xn, x , 𝜃

)
.

We can write the likelihood for zn−1 as

p
(
yn−1 |xn−1, 𝜃

)
∼ 1

(
𝜃 ≥ 𝜃n−1

min

)
1

(
𝜃 < 𝜃n−1

max

)
where 𝜃n−1

min and 𝜃n−1
max represent the support of the posterior

on 𝜃 given xn−1, yn−1.
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Proof Outline

For each unlabelled pool point xn, the updated likelihood
window function gets split based on yn.
For yn = 1 − 𝛼:∫ 1

0
log

1∑︁
y=0

p
(
y |x , 𝜃n

)
dx = |xn − 𝜃n−1

max |

For yn = 𝛼: ∫ 1

0
log

1∑︁
y=0

p
(
y |x , 𝜃n

)
dx = |𝜃n−1

min − xn |.

Therefore,

Cn |n−1 = min
xn∈X

max{|xn − 𝜃n−1
max |, |𝜃n−1

min − xn |}.

The point xn which minimizes the maximal length is the mid
point of the interval

[
𝜃n−1

min , 𝜃
n−1
max

]
.
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IAL for Linear Regression

Theorem ([SF24])
Consider the hypothesis class:

PΘ = {p (y |x , 𝜃) |𝜃 ∈ Rd }

p (y |x , 𝜃) = 1
√

2𝜋𝜎2
exp

(
− 1

2𝜎2

(
y − xT 𝜃

)2
)

Then the following upper bound holds (with equality for high
SNR):

Cn ≤ min
Xn

Tr

(
X T

testXtest

(
X T

n Xn +
𝜎2

𝜆
I
)−1)

𝜃 is computed using L2 regularization with a factor 𝜆.
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Gaussian Process Classification

The IAL for GPC:

Cn |n−1 = min
xn∈X

max
yn∈Y

∑︁
v ∈V

∫
u∈U

p
(
v |f̂u

)
du

The MAP estimation for the model parameter vector, f (for all
possible feature points):

f̂ = argmax
f

p
(
yn |fxn

)
p (v |fu) p(f |xn−1, yn−1)

p(f ) is a Gaussian process which acts as a regularization
prior over the latent vector f .
Given a training set, the posterior over f becomes
non-Gaussian and too complicated to work with.
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EP Approximation

Due to the likelihood factorization, no need to re-compute EP
with all the training data for every training and test points.

Assume q
(
f |yn−1, xn−1

)
is a Gaussian distribution.

EP approximates p
(
fxn , fu |yn, xn, u, v

)
as a 2-Dimensional

Gaussian:
q

(
f |yn−1, xn−1

)
as a prior.

The new data points [u, v ] and [xn, yn].
The MAP estimators f̂ yn

xn
and f̂ v

u are computed based on:

f̂ yn
xn
, f̂ v

u = argmax
fxn ,fu

q
(
fxn , fu |yn, xn, u, v

)
These are used to compute the average regret.
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Algorithm

1: Input: Training Data {xn−1, yn−1}
2: Training and Test samples {xi }Ni=1 and {ui }Ki=1.
3: Output: Next data point for labelling - xn
4: procedure IAL - GPC
5: Set D = [xn−1, yn−1]
6: Set EP prior qEP

prior = N
(
f |0, log 𝜆I

)
7: Run EP: qn−1 (

f
)
= EP (D, qEP

prior )
8: S = zeros(N , |Y|)
9: for i ← 1 to N do

10: for j ∈ Y do
11: for k ← 1 to K do
12: for l ∈ Y do
13: Set D = [xi , j , uk , l]
14: Set EP prior qEP

prior = qn−1 (
f
)

15: N
(
fuk , fxi |𝜇, V̂

)
= EP (D, qEP

prior )
16: f̂ l

uk
, f̂ j

xi
= 𝜇

17: S (i , j) = S (i , j) +Φ
(
l · f̂ l

uk

)
18: î =i maxj S
19: xn = x̂i
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Synthetic Data

The training pool is a square in the two dimensional plane
and divides it to two non overlapping regions.
The test set is a smaller sub-set with corners at four points
(-1, -0.5), (1, -0.5), (-1, -0.25), and (1, -0.25).
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Classification Error
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USPS Data Set

USPS hand-written digits data set.
Total of 9298 handwritten single digits between 0 and 9.
Test and train distributions do not necessarily belong to the
GPC hypothesis class.
Classify the digit 7 versus 9 (graphically similar→ hard to
classify)
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Algorithm Parameters

Dimension reduction (for EP complexity):
PCA is applied using the un-labelled training data
After centering and PCA, the eigen-vectors corresponding to
the 65% largest Eigen-values of the PCA are used.

Parameter Value
Passive Regularization 𝜆 5
MU Regularization 𝜆 5
BALD Regularization 𝜆 5
UAL Regularization 𝜆 5
IAL Regularization 𝜆 5
Initial training set 2 examples (1 for each class)
Unlabelled test set 5 random test features
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Error Probability: Hand-written digits data set, IND
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Error Probability: Hand-written digits data set, OOD
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Training set size vs Oracle calls
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IAL selects informative IND samples→ not just an
OOD detector
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Active Learning with Deep Neural Networks (DNN)

DNNs are the most dominant machine learning hypothesis
class in practical use.

Challenge

The computational bottleneck for DNNs is the long training
time.
Direct application of IAL for DNNs:

infeasible for real world large-scale data since it requires
training the entire model for each possible training and test
points!
Previous work approximated the pNML for DNNs by fine-tuning
the last layer for each test input and label combination.
Does not work well in practice for AL since AL affects all layers.
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System Model

We define the hypothesis class in this case as follows:

p (y |x , 𝜃) = softmax (f𝜃 (x))

where 𝜃 are all the weights and biases of the network and
f𝜃 (x) is the model output before the last softmax layer.
The MAP estimation for 𝜃 is:

𝜃 = argmax
𝜃

p
(
yn, y |xn, x , 𝜃

)
p(𝜃),

where the prior p(𝜃) acts as a regularizer.
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Factorization Trick

Using the following factorization, train the network using
xn−1, yn−1:

𝜃 = argmax
𝜃

p (y |x , 𝜃) p (yn |xn, 𝜃) p
(
𝜃 |yn−1, xn−1

)
p

(
𝜃 |yn−1, xn−1

)
is not dependent on the test data (x , y ) and

the evaluated labeling candidate (xn, yn).
No need to retrain the network for every (x , y ) and (xn, yn),
just run forward passes (inference) p (y |x , 𝜃) and p (yn |xn, 𝜃).
Significant reduction in computational complexity, as the
number of possible points xn can be huge.
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Posterior Approximation

Problem

The posterior p
(
𝜃 |yn−1, xn−1

)
is intractable!

For GPC, this posterior was approximated using EP:
Computing EP with every training and test points on a DNN is
computationally prohibitive.
EP is based on a single mode Gaussian approximation while
the p

(
𝜃 |yn−1, xn−1

)
is multi-modal→ empirically didn’t produce

good results for DNN’s.

A different approach for approximating the posterior with low
complexity is needed.
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MC Dropout

MC (Monte Carlo) Dropout [GG16] is a technique used in
deep learning to estimate the uncertainty of a neural
network’s predictions.
An estimate of the network’s uncertainty is performed by
running multiple forward passes with different dropout masks.
The variance of the outputs across the different passes gives
an estimate of the uncertainty of the prediction.
We opted to use MC-Dropout , due to its computational
simplicity and favorable performance.
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MC Dropout

Dropout training applied before every layer is mathematically
equivalent to minimizing the KL divergence between the
weight posterior of the full network and a parametric
distribution, q (𝜃) which is controlled by a set of Bernoulli
random variables with the dropout probability [GG16].

We replace the full posterior, p
(
𝜃 |yn−1, xn−1

)
, with the

approximate distribution q
(
𝜃 |yn−1, xn−1

)
.

Therefore,

𝜃 ≈ argmax
𝜃

p (y |x , 𝜃) p (yn |xn, 𝜃) q
(
𝜃 |yn−1, xn−1

)

Problem

q
(
𝜃 |yn−1, xn−1

)
is still too complex to analytically compute.
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Deep Individual Active Learning (DIAL)

Instead of computing q
(
𝜃 |yn−1, xn−1

)
, we propose to sample

M weights, {𝜃m}Mm=1 (just by running dropout in inference)

from q
(
𝜃 |yn−1, xn−1

)
and find 𝜃 among all the different

samples.
Another simplification:

𝜃 = arg max
{ 𝜃m }Mm=1

p (y |x , 𝜃m) p (yn |xn, 𝜃m)

In short, it means running M forward passes with Dropout
ON and taking the softmax output for p (y |x , 𝜃m) and
p (yn |xn, 𝜃m) (using same seed)
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DIAL Algorithm

1: Input Training set zn−1, unlabeled pool and test samples
{xi }Ni=1 and {xk }Kk=1.

2: Output Next data point for labeling x̂i
3: Run MC-Dropout using zn−1 to get {𝜃m}Mm=1
4: S = zeros(N , |Y|)
5: for i ← 1 to N do
6: for yi ∈ Y do
7: for k ← 1 to K do
8: Γ = 0
9: for yk ∈ Y do

10: 𝜃 = argmax𝜃m
p (yk |xk , 𝜃m) p (yi |xi , 𝜃m)

11: Γ = Γ + p
(
yk |xk , 𝜃

)
12: S (i , yi ) = S (i , yi ) + log Γ
13: x̂i = argminxi

maxyi S
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Experiments Datasets

The MNIST dataset consists of 28x28 grayscale images of
handwritten digits, with 60K images for training and 10K
images for testing.
The EMNIST dataset is a variant of the MNIST dataset that
includes a larger variety of images. It consists of 240K
images with 47 different labels.
The CIFAR10 dataset consists of 60K 32x32 color images in
10 classes.
Fashion MNIST 70K images with each image is 28x28
grayscale pixels.
The SVHN dataset contains 600K real-world images with
digits and numbers in natural scene images collected from
Google Street View.
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Training and Test Data

MNIST and OOD images

EMNIST and OOD images

MNIST test images

EMNIST test images
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Training and Test Data

CIFAR10 and OOD images CIFAR10 test images
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Active Learning Algorithms

The Random sampling selects samples to label randomly,
without considering any other criteria.
The Bayesian Active Learning by Disagreement (BALD)
[GIG17] calculates the mutual information between the
model’s predictions and the model’s parameters.
The Core-set algorithm aims to find a small subset from a
large labeled data-set such that a model learned from this
subset will perform well on the entire data-set.
The Expected Predictive Information Gain (EPIG) method
[SKF+23] was motivated by BALD’s weakness in
prediction-oriented settings. This acquisition function directly
targets a reduction in predictive uncertainty on inputs of
interest by utilizing the unlabelled test set.
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MNIST experimental results

We considered a model consisting of two blocks of
convolution, dropout, max-pooling, and ReLu, with 32 and 64
5x5 convolution filters.
These blocks are followed by 2 fully connected layers that
include dropout between them.
The layers have 128 and 10 hidden units respectively.
The dropout probability was set to 0.5 in all three locations.
For BALD, EPIG, and DIAL we used 100 dropout iterations
and employed the criterion on 512 random samples from the
unlabeled pool.
The 256 samples with the highest score are taken 2.

2Significant room for improvement!
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MNIST Results
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MNIST with OOD: Number of Oracle Calls at x%
accuracy

Methods 85% Acc. 75% Acc. 65% Acc.
Random 145 73 36
Core-set 117 61 33
BALD 83 51 32
DIAL 73 (-12.1%) 48 (-5.9%) 30 (-6.2%)
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EMNIST experimental results

Larger model than MNIST consisting of three blocks of
convolution, dropout, max-pooling, and ReLu.
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EMNIST with OOD: Number of Oracle Calls at x%
accuracy

Methods 40% Acc. 30% Acc. 25% Acc.
Random 281 140 80
Core-set 221 96 62
BALD 154 85 59
DIAL 138 (-10.4%) 84 (-1.2%) 59 (0%)
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CIFAR10 experimental results

For the CIFAR10 data-set, we utilized ResNet-18 with
acquisition size of 16 samples.
We used 1K initial training set size.
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CIFAR10 experimental results
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CIFAR10 in the presence of OOD samples: number of
Oracle calls at specific accuracy rate values

Methods 66% Acc. 62% Acc. 58% Acc.
Random 3956 1828 1220
Core-set 4468 1844 1412
BALD 4020 1636 1202
EPIG 3636 1700 1108
DIAL 3076 (−15.4%) 1556 (−4.9%) 1060 (−4.3%)
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Future Direction: Batch Active Learning

Practical active learning choose a batch of samples and not
one sample at a time.
Selecting the highest-score batch using IAL or UAL gives bad
performance since samples with high correlation are chosen.
Consider the relationship between the selected samples and
the overall composition of the batch, which may lead to even
further improvements in performance.
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Summary

Proposed AL criteria for the stochastic and individual
settings:

Both take into account a small un-labelled sample of the test
set.
Unified active learning framework for a variety of hypothesis
classes (binary classification and linear regression).

Proposed an AL scheme for Deep Neural Networks (DIAL).
Scheme is based on a low complexity uncertainty
quantification approach (MC-Dropout).
In the presence of out-of-distribution data, DIAL reduces the
required number of Oracle calls by up to 15.4%, 10.4%, and
12% for CIFAR10, EMNIST, and MNIST datasets respectively.

Proposed a near-optimal, low complexity, algorithm (SPM)
for active learning of high dimensional linear separators with
various label noise models.
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Thank You!
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Backup

Active Learning for Linear Binary
Classification in the Stochastic

Setting
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Communication over Noisy Channels with Noiseless
Feedback

Feedback cannot increase the capacity of memoryless
channels
Can boost reliability and simplify transmission schemes.
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Posterior Matching Scheme

Capacity achieving scheme proposed by Shayevitz and
Feder [SF07], suitable for any memory-less channel P (Y |V ).
Information bits are encoded to a point 𝜃0 in the interval
[0, 1].
Next symbol vt is computed via:

vt = F −1
V

(
F𝜃0 |Y t−1

(
𝜃0 |y t−1

))
The estimation error on 𝜃0 drops exponentially fast.
For a binary valued vt , with V ∼ Ber (p), the PM scheme
reduces to:

vt =

{
1, if 𝜃0 > F −1

𝜃 |y t−1 (p)

0, otherwise
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Posterior Matching Scheme
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Active Learning as a Communication Problem
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Active Learning for 1d Classifier

The Idea is to look at the problem as communicating 𝜃0 over
a noisy channel.
Pass as much information bits on 𝜃0 using few channel uses
and correctly decode 𝜃0.

If we choose 𝜙

(
xt |x t−1, y t−1

)
= F −1

𝜃 |y t−1 (p), we achieve
capacity!
Using this scheme we get an exponential decay on minimax
redundancy with the channel capacity as the decay factor!
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High Dimensional Linear Separators

Features x ∈ Rd satisfy ∥x ∥ ≤ R with uniform p(x).
The hypotheses class contains all possible hyper-planes with
normal vector w and threshold b.
The relation between feature x and clean label v is defined
as,

p(v |x ,w , b) =
{

1 if wT x > b
0 otherwise

v passes through a discrete memory-less channel p(y |v )
and produces the noisy label - y .
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Successive Posterior Matching (SPM)

Question
How do we use Posterior Matching for the high dimensional
problem?

SPM Idea
True classifier is fully described by its normal vector.
The idea is to successively localize the spherical coordinates
of the normal vector w using Posterior Matching.
Each coordinate lives on the arc: 𝜃i ∈ [0, 𝜋].
The intersection of the hyper-plane and the arc is the barrier
between classification regions.
For each spherical coordinate we have a noisy one
dimensional barrier problem.
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Successive Posterior Matching (SPM)

1: Init: 𝜃 = [ 𝜋2 ,
𝜋
2 ,

𝜋
2 , ...,

𝜋
2 ],

2: Init: ∀i ∈ [1 : d − 1], p(𝜃i ) = Unif [0, 𝜋]
3: for i ← d − 1 to 1 do
4: for k ← 1 to n do
5: 𝜃i = F −1

𝜃i |x i
1:k−1,y

i
1:k−1

(
p−0.5
p+q−1

)
6: x i

k = [Πd−1
l=1 sin(𝜃l ), cos(𝜃d−1)Πd−2

l=1 sin(𝜃l )
, ..., cos(𝜃i )Πi−1

l=1 sin(𝜃l ), ..., cos(𝜃1)]
7: y i

k = Label (x i
k )

8: Update p(𝜃i |x i
1:k , y

i
1:k )

9: 𝜃i = 𝜃i + 𝜋
2
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Classifier
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PM on Azimuth
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Estimated Barrier between Classification Regions
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PM on Elevation
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Estimated Barrier between Classification Regions
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Estimated Normal Vector
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Minimax Redundancy Convergence for SPM

Theorem [[SF19]]
Assuming:

x ∈ Rd+1 with a bounded feature p.d.f.
The Oracle is some member of a d dimensional
homogeneous hyper-plane hypotheses class followed by a
BAC.
n is the total number of Oracle queries
CW is the Shannon capacity of the BAC with transition
probability W .

Then, SPM produces a selection policy for which the minimax
Redundancy decays exponentially fast to zero:

lim
n→∞

R = lim
n→∞

I (𝜃;Y |X , xn, yn) = O
(
2−

n
d CW

)
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SPM Complexity

p(𝜃i |x i
1:n, y

i
1:n) is updated at each iteration and the threshold

point needs to be localized with very high accuracy.
The Naïve approach would be to quantize the interval [0, 𝜋]
and compute the posterior.
However, this approach is computationally expensive.
Hypothesis class is a linear separator followed by a noisy
binary channel, then the posterior of the intersection angle is
a multiplication of different step functions.
Only maintain a list of the step points and update the value of
the posterior between these points.
The number of points is exactly the number of training
examples is linear with it.
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Simulation Results

SPM is compared to a widely used passive learning
algorithm for learning hyper planes - Support Vector Machine
(SVM) which is known to perform very well even in noisy
conditions.
A Monte Carlo simulation was implemented to estimate the
error probability for an active learner based on SPM and a
passive learner based on SVM.
The comparison will be for feature spaces with d = 200 and
d = 500 and using a BAC with q = 10−2 and p = 10−3.
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Error Probability for BSC(10−2)
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Error Probability for BSC

500 600 700 800 900 1000 1100 1200 1300

Training Size

10-3

10-2

10-1

100
E

rr
o
r 

P
ro

b
a
b
ili

ty

SPM d=200,p=10
-2

 sim

SPM d=200,p=10
-2

 theory

SPM d=200,p=10
-3

 sim

SPM d=200,p=10
-3

 theory

104 / 104


	Introduction
	Stochastic Setting
	Individual Setting
	Summary

