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Abstract

Active learning is a learning paradigm where the training data is actively and purposely
chosen. One of its main goals is to optimize a model’s performance by minimizing the
number of annotated samples. Recent active learning leading strategies are based on the
assumption that the training pool has the same distribution as the test set, which may
not be the case in privacy-sensitive applications where user data cannot be annotated.

In the first part of the research, the stochastic setting for data is considered. A new
information theoretic active learning criterion is proposed based on a Redundancy-
Capacity theorem of universal source coding. This criterion naturally induces an
exploration - exploitation trade-off in feature selection and generalizes previously
proposed heuristic criteria. The new criterion is compared analytically and empirically
to other commonly used active learning criteria.

Next, the linear hyper-plane hypotheses class with asymmetric label noise is con-
sidered. We propose a low complexity algorithm which learns the optimal hyperplane.
The algorithm is inspired by the Posterior Matching scheme for communication with
feedback with an adaptation to high dimensions. We utilize the previous Capacity - Re-
dundancy theorem to show that for general label noise and bounded feature distribution,
the minimax redundancy of this algorithm decays exponentially fast to zero.

In the second part of the research, we consider the individual setting, which does
not assume a probabilistic relationship between the training and test data. Motivated by
universal source coding, we propose a criterion that chooses to label data points that
minimize the min-max regret on the test set. It is shown that for binary classification
and linear regression, the resulting criterion coincides with well known active learning
criteria and thus represents a unified information theoretic active learning approach
for general hypothesis classes. Finally, it is shown, using real data that the proposed
criterion outperforms other active learning criteria in terms of sample complexity. By
applying an approximate version of our individual criterion to neural networks, we
show that in the presence of out-of-distribution data, the proposed criterion reduces the
required training set size by up to 15.4%, 10.4%, and 12% for CIFAR10, EMNIST, and
MNIST datasets respectively.
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Chapter 1

Introduction

Many machine learning applications today rely heavily on large labeled data-sets and
on the assumption that humans can annotate all the available data for training. The
evolution of vision data-sets has been greatly influenced by MNIST and ImageNet from
1998 to 2016. As shown in Figure 1.1 there was a growth of 0.11 OOMs/year (orders of
magnitude per year) in the size of the data sets used for training vision models. Datasets
for language models have grown by 0.23 OOMs/year since 1990, for a total growth
of 7 OOMs between 1990 and 2022 as shown in Figure 1.2. The data suggests that
this growth has been faster since 2014. It’s remarkable that up until 2014 there were
notable models trained on very little data, such as Deep Belief Networks (trained on less
than 200 thousand words), but after 2016 virtually all notable models have been trained
on more than 100 million words. This might reflect the adoption of more efficient
architectures such as Transformers that allow training on much more data.

Moreover, data storage became cheap enough that companies started hoarding data
without even knowing quite what to do with it. Data collection became ubiquitous, due
to the internet of things, which allowed for entire new streams of valuable data. Data
processing benefited immensely from the emerging power of GPUs and TPUs to train
more robust deep learning models. Having a preponderance of data to power business
operations is, generally speaking positive.

Since ML models use supervised learning, the success of these projects is hugely
dependent on a company’s ability to label its data accurately and efficiently. Data is
annotated by experts (Oracles) tasked with generating what is called “Ground Truth”.
These annotations are denoted as labels and represent the class or value that we want
the trained models to predict for a specific data point. For example, an annotator might
look at an image and label an object from a pre-existing ontology of classes. The label
is fed to the model for the process of learning via training. In a sense, labeling is the
injection of human knowledge into the model. This is a critically important step in
developing high-performance ML models. At the risk of being reductive, good labels
drive good models. This is also the main bottleneck in an ML project since the experts
are typically expensive and their work is time consuming.

The data collection, annotation and learning process is graphically presented in
Figure 1.3. We assume a large unlabelled pool of data points is available for labelling.
Since we cannot ask an oracle to label all the data points in this pool, a subset is
randomly collected and labelled. Consequently, only a small sub-set is labeled which
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Figure 1.1: Size of Data-sets for Vision

Figure 1.2: Size of Data-sets for Language
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Figure 1.3: Passive Learning

may be un-representative of the true underlying model between features and labels, thus
large generalization errors might occur. To avoid this, the training set is redundant and
usually larger than required. Therefore, generalization bounds for passive learning error
probability do not decay exponentially fast.

Due to the fact that data is ubiquitous and collected from multiple sources, the
unlabelled pool may contain out-of-distribution (OOD) data which is irrelevant for
the learning task. For example, a learning model classifies cats versus dogs and some
images in the unlabelled pool also contain frogs. If we input the frog images to our
learning model then what should it output? In this case, the oracle will label these
images as OOD and they will not be included in the training phase. However, since the
oracle took time to label them as OOD, it will still be included in the labelling budget.
For large scale data sets, a pre-processing removal of OOD samples is a very costly
process and if it can be embedded into the data selection process it would be extremely
beneficial.

Active learning is a framework in which the learner can interact with a labeling
expert by sequentially selecting the most informative samples for the expert to label
based on previously observed labeled data. Therefore, reducing the number of examples
needed to achieve a given accuracy level [1]. The traditional active learning setting is
shown in Figure 1.4. In the last decade there has been significant progress in active
learning research. Most rigorous results and bounds are, however, for binary linear
classification or regression problems. Most papers deal with proposing a heuristic for
feature selection, analyzing its performance and comparing to different lower bounds
[2], [3] and [4]. Some of the algorithms and heuristics which have been proposed for
active learning include: [5], [6], [7], [2], [8], [9], [10], [11] and [12].

One well studied approach is based on the disagreement region introduced by
Hanneke in [4]. This region contains all the features for which at least two candidate
learners do not agree on. Thus, querying the label of such a feature may be helpful to
reduce the candidate pool. The general algorithmic framework of disagreement based
active learning in the presence of noise was introduced with the 𝐴2 algorithm by Balcan
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in [6] and other related work in [13], [10] and [14].
Another approach which has proven effective is margin based active learning which

has better label and computational complexity than disagreement based approaches.
The idea is not to sample features in all the disagreement region but at carefully
selected regions inside, specifically near the edges of this region. This approach was
introduced in [7] and continued in [15] and [16]. While this approach has much better
computational complexity than the disagreement based approach, it is not robust to
noise. Also, since this algorithm samples points based on some known prior distribution
on the features, the exponential decay will only work for log-concave distributions.

In addition, several approaches consider information-theoretic criteria for selecting
features [17], [18] and [19]. The most common method is uncertainty sampling or
Maximum Uncertainty (MU), where the feature with the highest label entropy given
the training is selected. In some sense this approach is very similar to the margin based
approach in [15]. However, this aggressive, essentially greedy, scheme may lead to
large generalization errors since noise might produce very high entropy and corrupt
the training set. Suppose a very noisy feature is presented to the learner, then the
probability assigned to all the labels will be very low (essentially uniform), causing the
label entropy to be very high. The learner will thus learn the noise modalities instead of
useful information.

In [19] an information theoretic criterion is proposed which is based on maximizing
the mutual information between the model and the selected features and provides good
performance. The criterion is based on reducing the number of possible hypotheses
maximally fast, i.e. to minimize the uncertainty about parameters using Shannon’s
entropy. This criterion also appears as an upper bound on information based complexity
of stochastic optimization in [20] and also for experimental design of experiments in
[21] and [22]. This criterion represents the average reduction in uncertainty on the
model 𝜃 after observing the label 𝑌𝑡 of feature 𝑋𝑡 based on the available training. Since
this maximization is generally very difficult, a greedy algorithm is proposed, which
seeks the data point 𝑋𝑡 that maximizes the decrease in expected posterior entropy. This
approach was empirically investigated in [23], where a Bayesian method to perform
deep learning was proposed and several heuristic active learning acquisition functions
were explored within this framework. It was shown that the performance of this criterion,
denoted as BALD , was the best. However, this criterion does not to take into account
the test distribution 𝑝(𝑥) and thus may select examples which are not informative for
the test case at hand.

The underlying assumption for most of the schemes discussed above is that the
distributions of the unlabeled pool and the test set are the same. However, this may not
always be true, particularly in privacy-sensitive applications where real user data cannot
be annotated [24] and the unlabeled pool may contain irrelevant information. In such
cases, choosing samples from the unlabeled pool may not necessarily improve model
performance on the test set. In order to mitigate this distribution shift, we propose a new
setting for active learning as presented in Figure 1.5. The idea is to extend the classical
active learning framework in Figure 1.4 by making the learner aware of the test set
(access to an unlabeled subset of the test set). Test samples may not be annotated due
to privacy or other consideration but we assume a very small sample of unlabeled test
points can be collected and provided to the active learner. We will show using different
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Figure 1.4: Standard Active Learning Setting

assumptions on the data, that this setup allows the derivation of active learning criteria
which outperform current state of the art schemes on real data sets.

Following the foundational work on universal prediction done by Feder and Merhav
in [25], we divide active learning into two settings: stochastic and individual. The
difference between the two is whether the data follows some distribution (stochastic) or
not (individual). In the first part of the research, comprising Chapter 2 and Chapter 3
and based on our contributions in [26, 27], we study the stochastic setting and propose
an active learning criterion which is based on a Redundancy-Capacity theorem. We
analyze its performance for different hypothesis classes and compare it to other infor-
mation theoretic active learning criteria. We also design a low complexity, noise robust
algorithm for active learning in the multi dimensional linear separator hypothesis class
with label noise.

In the second part of the research, comprising Chapter 4 and Chapter 5 and based
on our contributions in [28, 29, 30], the individual setting is considered. An active
learning criterion is proposed based on predictive Normalized Maximum Likelihood
(pNML) [31]. The idea is to find a training set for which the minimax regret (with
respect to a genie learner) is minimized over the unlabeled test sample. We show
that this criterion can be viewed as a generalization of other well known criteria for
different hypothesis classes. Also, a low complexity selection algorithm is derived
for Deep Neural Networks (DNN) based on MC-Dropout [32]. It is shown that this
algorithm outperforms current state of the art active learning schemes on real datasets
with distribution shift. Chapter 6 concludes this study, giving concluding remarks and
presenting open questions.
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Figure 1.5: Test Aware Active Learning Setting

7





Part I

Active Learning in the Stochastic
Setting
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Chapter 2

Universal Active Learning via
Conditional Mutual Information
Minimization

In this part of the research, comprising Chapter 2 and Chapter 3, active learning in
the stochastic setting is discussed and is based on the work in [26, 27]. In Chapter 2, a
new active learning criterion is proposed which is based on a Capacity - Redundancy
theorem. This criterion is analyzed and its advantages over existing criteria are discussed.
The main advantage of the proposed criterion is for the distribution shift scenario. If
the test distribution, 𝑝𝑡𝑒𝑠𝑡 (𝑥), differs from the training set distribution, 𝑝𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 (𝑥),
traditional active learning criteria fail to provide good test time error. What is maximally
informative for model estimation may not be maximally informative for test time
prediction.

We propose to solve this issue by optimizing the training set while taking into
account the un-labelled test set. Since the trained model will be tested using the test
set, one should select training points which have the most relevance to the test set.
Essentially, there is no real need to learn the labeling function over the whole feature
space which may be very complex and require many data points. Traditionally, a
pre-processing stage prunes the training set from data points which are irrelevant to the
test, but this requires domain knowledge regarding the similarity between training and
test sets.

Criteria such as BALD and MU do not take into account the un-labelled test set
and select data points based solely on the training pool. In [27], a criterion denoted as
Universal Active Learning (UAL) was derived based on universal source coding and
minimax regret minimization. UAL utilizes the unlabeled test set in order to learn data
points which are most relevant to the test set. It was shown in [27] that UAL is related
to BALD and MU and is basically a generalization of the two. In [33], UAL is also
proposed using heuristic arguments and denoted as Expected Predictive Information
Gain (EPIG).

In chapter 3, active learning for linear separators is addressed and a low complexity,
noise robust algorithm, denoted as Successive Posterior Matching (SPM) is proposed. It
is shown via simulations that SPM achieves asymptotically optimal sample complexity
for this hypothesis class. Moreover, it is proved that SPM generates an active learning
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selection policy for which the criterion presented in chapter 2, decays exponentially
fast to zero. Using the Capacity - Redundancy theorem, this means that the minimax
Redundancy also decays exponentially fast to zero for SPM.

2.1 Stochastic Setting
In this section, the stochastic setting for learning is presented and discussed. This
setting was presented in the context of universal prediction in [25] and the adaptation
to learning is presented in this section. The main assumption is that the data follows
some stochastic parametric hypothesis class. This assumption is very useful for deriving
theorems but is not easily verifiable in real world applications. However, it will be
shown that empirically, the derived criterion and algorithms provide good performance
in real world applications.

Denote Θ as a general index set, this class is a set of conditional probability distri-
butions, or sometimes referred to as the hypothesis class:

𝑃Θ = {𝑝 (𝑦 |𝑥, 𝜃) |𝜃 ∈ Θ} (2.1)

We assume a training set consisting of 𝑁 pairs of examples is provided to the learner:

𝑧𝑁 = {(𝑥𝑛, 𝑦𝑛)}𝑁𝑛=1 (2.2)

where 𝑥𝑛 is the 𝑛-th data point and 𝑦𝑛 is its corresponding label
In the stochastic setting, the data’s distribution follows:

𝑝

(
𝑦𝑁 |𝑥𝑁 , 𝜃0

)
= Π𝑁

𝑛=1𝑝 (𝑦𝑛 |𝑥𝑛, 𝜃0) (2.3)

where 𝑝(𝑦 |𝑥, 𝜃0) ∈ 𝑃Θ with 𝜃0 ∈ Θ.
The goal of a learner (passive or active) is to predict an unknown test label 𝑦 given

its test data, 𝑥, by assigning a probability distribution 𝑞
(
·|𝑥, 𝑧𝑁

)
for each training 𝑧𝑁 .

In all subsequent sections, performance is evaluated using the log-loss function, i.e.
− log

(
𝑞

(
·|𝑥, 𝑧𝑁

) )
. We do not make a distinction yet between active and passive learning

since we assume that the data is provided to the learner and still do not discuss how it
was acquired.

Had the learner known 𝜃0, then the best probability assignment would be:

𝑞

(
·|𝑥, 𝑧𝑁

)
= 𝑝 (𝑦 |𝑥, 𝜃0)

and there is no need for the training 𝑧𝑛.
However, 𝜃0 is unknown and needs to be estimated based on 𝑧𝑁 . Therefore, we

formulate the following learning problem as the expected log-loss difference (regret)
between a learner q and the reference learner (which knows 𝜃0):

𝑅 (𝑞; 𝑥, 𝜃0, 𝑧
𝑛) = E

{
log

(
𝑝 (𝑦 |𝑥, 𝜃0)
𝑞 (𝑦 |𝑥, 𝑧𝑛)

)}
(2.4)

where the expectation is over the conditional 𝑝 (𝑦 |𝑥, 𝜃0). The regret measures how good
a learner 𝑞 is compared to the best learner 𝑝 (𝑦 |𝑥, 𝜃0).
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Since we have no access to 𝜃0, it is not feasible to optimize (2.4). Therefore,
we propose to modify the learning objective and to minimize the maximal (worst 𝜃)
expected log-loss regret of this learner. In other words, if we do not know the regret to
the correct 𝜃0, we can upper bound the regret by the worst case regret. If for a specific
training set the worst case regret will be low, then the true regret (for 𝜃0) will be lower.

The minimax log loss regret, 𝑅𝜙, after learning 𝑁 examples for a specific feature
selection policy 𝜙, is:

𝑅𝜙 = min
𝑞

max
𝜃

E
{
log

(
𝑝 (𝑦 |𝑥, 𝜃)

𝑞
(
𝑦 |𝑥, 𝑥𝑁 , 𝑦𝑁

) ) |𝜃} (2.5)

where the expectation in (2.5) is performed over the joint probability:

𝑝

(
𝑦, 𝑥, 𝑥𝑁 , 𝑦𝑁 |𝜃

)
= 𝑝 (𝑦 |𝜃, 𝑥) Π𝑁

𝑡=1𝑝 (𝑦𝑡 |𝑥𝑡 , 𝜃)

𝜙

(
𝑥𝑡 |𝑥𝑡−1, 𝑦𝑡−1

)
𝑝(𝑥)

(2.6)

and 𝜙(𝑥𝑡 |𝑥𝑡−1, 𝑦𝑡−1) is the sequential selection policy which gives a probability distribu-
tion for each training feature, 𝑥𝑡 , based only on the past observed training data 𝑥𝑡−1, 𝑦𝑡−1.
Another assumption we make is that 𝑝(𝑥 |𝜃) = 𝑝(𝑥) since the feature prior should be
independent of the model.

Remark 1. Note that the selection may be stochastic, which means that after observing
the past examples there may be some randomness in choosing the next feature. For
example, in passive learning, the distributions

{
𝜙(𝑥𝑡 |𝑥𝑡−1, 𝑦𝑡−1)

}𝑁
𝑡=1 are uniform, since

the examples are drawn uniformly from the training pool.

Remark 2. We would like emphasize the fact that we are concerned with the prediction
problem which requires minimum loss on the predicted test label given test feature and
not with estimating 𝜃0. There is a conceptual difference between the model estimation
and prediction problems and we argue that in real world applications the most important
thing is the prediction error and not if the model is well estimated. Sometimes it is a
much harder problem to do model estimation than prediction, especially when we have
distribution shift between the training and test sets.

2.2 Universal Active Learning
Now we can use the regret defined in the section above to present the active learning
setup. In active learning, the objective is to sequentially select features and collect 𝑁
training examples (examples contain features 𝑥𝑁 = {𝑥}𝑁

𝑖=1 and labels 𝑦𝑁 = {𝑦}𝑁
𝑖=1). This

training set is used to find a probabilistic learner for a test label 𝑦, given a test feature 𝑥:
𝑞

(
𝑦 |𝑥, 𝑥𝑁 , 𝑦𝑁

)
, such that it will perform as close as possible to the best learner in the

hypotheses class: 𝑝(𝑦 |𝑥, 𝜃), i.e. the Oracle. Essentially, we would like to find the best
learner for a given 𝑁 , without knowing the best learner. A related analysis for passive
learning was provided in [31] but assumes i.i.d training samples.

Following the formulation in the previous section, we want to optimize the selected
policy, 𝜙. Therefore we would like to minimize (2.5) over

{
𝜙(𝑥𝑡 |𝑥𝑡−1, 𝑦𝑡−1)

}𝑁
𝑡=1. The
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final active learning problem formulation can be stated as finding the policy 𝜙 which
minimizes 𝑅𝜙, i.e:

𝑅 = min
{𝜙𝑡 }𝑁𝑡=1

min
𝑞

max
𝜃

E
{
log

(
𝑝 (𝑦 |𝑥, 𝜃)

𝑞
(
𝑦 |𝑥, 𝑥𝑁 , 𝑦𝑁

) )} (2.7)

The following theorem is the basis for active learning in the stochastic setting:

Theorem 1 (Redundancy-Capacity). The minimax active learning problem defined in
(2.7) is equivalent to the conditional model capacity,

𝑅 = min
{𝜙(𝑥𝑡 |𝑥𝑡−1,𝑦𝑡−1)}𝑁𝑡=1

max
𝜋(𝜃)

𝐼

(
𝑌 ; 𝜃 |𝑋,𝑌𝑁 , 𝑋𝑁

)
(2.8)

and the optimal learner is:

𝑞∗
(
𝑦 |𝑥, 𝑥𝑁 , 𝑦𝑁

)
=

∑︁
𝜃

𝑝

(
𝜃 |𝑦𝑁 , 𝑥𝑁

)
𝑝 (𝑦 |𝜃, 𝑥) (2.9)

where 𝜋(𝜃) is a capacity achieving distribution for the channel 𝜃 → 𝑌 given the test 𝑋
and training 𝑋𝑁 , 𝑌𝑁 and 𝐼 (𝑋;𝑌 |𝑍) is the mutual information between 𝑋 and 𝑌 given
𝑍 .

The proof for Theorem 1 is provided in Appendix A.1. Note that for any prior
distribution 𝜋(𝜃) with 𝜃 ∈ Θ, any policy 𝜙 and a given model class 𝑝(𝑦 |𝑥, 𝜃), the mutual
information 𝐼 (𝜃;𝑌 |𝑋, 𝑋𝑁 , 𝑌𝑁 ) is well defined. The active learning designer finds 𝜙 and
𝜋 which solve the minimax problem in (2.8). Once 𝜋(𝜃) is known, the optimal learner
𝑞∗ is given by (2.9) for any realization of 𝑥𝑁 , 𝑦𝑁 , 𝑥.

Theorem 1, is denoted as the Redundancy-Capacity theorem since it is very similar
to the classical result in universal prediction, with the same name, proposed in [34]. In
universal prediction, a stream of samples is given sequentially to a predictor and the
objective is to predict the next sample based on the constraint that the samples originate
from a source belonging to some predefined set of distributions. The Redundancy-
Capacity links the minimax prediction problem with channel capacity.

Theorem 1, proposes a new criterion for optimal selection policy in active learning.
The objective is to find a selection policy which will minimize the conditional capacity
between the model parameters and test label given the test feature and training data.
This is different than active learning strategies used today which do not take into account
the test feature prior, 𝑝(𝑥), and instead maximize the mutual information between the
training and model, ignoring the test set if available. In practical applications, if the
test set is available, then there will be a dedicated pre-processing stage to prune the
training set from data points which seem irrelevant to the test scenario. This step is
implicitly preformed by the proposed criterion. This has the potential to significantly
improve performance in active learning for priors which are multi-modal and help avoid
learning sub-spaces of features which are non-informative for the test scenario. There is
of course an issue on how to find 𝑝(𝑥), and if such a probability even exists. However,
since the main bottleneck in machine learning is the labeling process and not the amount
of training features, then we can assume we can estimate the feature probability in some
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way and come up with an approximation of 𝑝(𝑥) or the relative occurrences of features
in real life.

Another useful formulation for the minimax log-loss regret can be the following:

𝑅 = min
{𝜙𝑡 }𝑁𝑡=1

min
𝑞

max
𝜋(𝜃)∈Π

𝐸

{
log

(
𝑝 (𝑦 |𝑥, 𝜃)

𝑞
(
𝑦 |𝑥, 𝑥𝑁 , 𝑦𝑁

) )} (2.10)

where 𝑥𝑁 , 𝑦𝑁 are the training examples and Π is a set of distributions on the random
variable 𝜃.

This formulation is less restrictive than the previous and will be useful for regularized
linear regression and Gaussian Process Classification where the prior on 𝜃 is either
regularized or explicitly given. Also note that for the alternative formulation proposed
in 2.10, the prior 𝜋(𝜃) ∈ Π and the same Theorem holds. The expectation is performed
over the joint probability:

𝑝

(
𝑦, 𝑥, 𝑥𝑁 , 𝑦𝑁

)
= 𝑝 (𝑦 |𝜃, 𝑥) Π𝑁

𝑡=1𝑝 (𝑦𝑡 |𝑥𝑡 , 𝜃) 𝜙
(
𝑥𝑡 |𝑥𝑡−1, 𝑦𝑡−1

)
𝑝(𝑥)𝜋(𝜃) (2.11)

The following theorem states that the optimal 𝜙(𝑥𝑡 |𝑥𝑡−1, 𝑦𝑡−1) places all the proba-
bility mass on a specific feature, and is essentially deterministic given the history.

Theorem 2 (Optimal Selection Policies). The selection policies which optimize (2.8)
are deterministic:

𝜙(𝑥𝑡 |𝑥𝑡−1, 𝑦𝑡−1) = 𝛿
(
𝑥𝑡 − 𝑓

(
𝑥𝑡−1, 𝑦𝑡−1

))
where 𝛿(·) is the Dirac or Kronecker delta function for continuous or discrete 𝑥𝑡
respectively and 𝑓

(
𝑥𝑡−1, 𝑦𝑡−1) is a deterministic function from the history 𝑥𝑡−1, 𝑦𝑡−1

sequence to a feature 𝑥𝑡 .

The proof in provided in Appendix A.2.
The optimization of (2.8) is unfortunately intractable for many hypotheses classes.

The reason is that the number of candidate policies grows exponentially fast and thus
infeasible to search for the best possible policy. Moreover, the objective function is
not sub-modular or adaptively sub-modular [35] and thus greedy algorithms are not
guaranteed to converge in the general case.

The proposed criterion, which is denoted as Universal Active Learning (UAL), can
be decomposed in the following manner using the chain rule:

𝐼

(
𝜃;𝑌 |𝑋,𝑌𝑁 , 𝑋𝑁

)
= 𝐼 (𝜃;𝑌 |𝑋) + 𝐼

(
𝜃;𝑌𝑁 |𝑋𝑁 , 𝑌 , 𝑋

)
− 𝐼

(
𝜃;𝑌𝑁 |𝑋𝑁

) (2.12)

𝐼 (𝜃;𝑌 |𝑋) does not depend on the selection policy and the optimization is only on the
difference between two other mutual information terms. We denote 𝐼

(
𝜃;𝑌𝑁 |𝑋𝑁 , 𝑌 , 𝑋

)
and 𝐼

(
𝜃;𝑌𝑁 |𝑋𝑁

)
as the exploitation and exploration respectively.

Exploitation in our case is the minimization of 𝐼
(
𝜃;𝑌𝑁 |𝑋𝑁 , 𝑌 , 𝑋

)
, which means

that if the test feature and label, (𝑋,𝑌 ), were known in advance, then we would like to
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select training examples which will be as correlative to the test as possible. We can use
the fact that:

𝐼

(
𝜃;𝑌𝑁 |𝑋𝑁 , 𝑌 , 𝑋

)
≤ 𝐻

(
𝑌𝑁 |𝑋𝑁 , 𝑌 , 𝑋

)
Therefore, finding 𝑋𝑁 which minimize𝐻

(
𝑌𝑁 |𝑋𝑁 , 𝑌 , 𝑋

)
would mean that 𝐼

(
𝜃;𝑌𝑁 |𝑋𝑁 , 𝑌 , 𝑋

)
will also be small. Finding 𝑋𝑁 which result with low conditional entropy, 𝐻

(
𝑌𝑁 |𝑋𝑁 , 𝑌 , 𝑋

)
,

means that if we knew 𝑋,𝑌 , then the uncertainty on the training data would be small.
For example, selecting 𝑋𝑁 to be very "similar" to 𝑋 would result with such low condi-
tional entropy. This criterion also takes into account the prior probability 𝑝(𝑥) and tries
to find the best examples averaged across this prior. This means that we are exploiting
the test data and trying to reduce uncertainty.

Exploration in our case is maximization of 𝐼
(
𝜃;𝑌𝑁 |𝑋𝑁

)
which is identical to BALD

[19]. This basically means that one wants to find the most uncertain example in the
pool. Therefore, UAL balances between exploration and exploitation and finds the most
informative example given the specific test set at hand.

2.2.1 Comparison with other Information Theoretic criteria
In this section the relation between UAL and other criteria such as BALD [19] and Max-
imum Uncertainty (MU) [18] is analyzed. It will be shown that UAL is a generalization
of the two criteria which takes additional information on the test set into consideration.
First, a brief review of these criteria is provided. The MU criterion [18] selects the
feature based on:

𝑥∗𝑡 = argmax
𝑥𝑡

𝐻 (𝑌𝑡 |𝑋𝑡 = 𝑥𝑡 , 𝑥𝑡−1, 𝑦𝑡−1) (2.13)

MU selects a feature in the training set whose conditional label entropy based on the
current training set is the highest. Since the current model cannot label this feature well,
then this example can improve the learning process best. However, this example may
be noisy and produce high entropy, thus the learner will now add noise to the training
set and this is of course not helpful to the learning task and the labeling budget.

The BALD criterion is defined as:

𝑥∗𝑡 = argmax
𝑥𝑡

𝐼 (𝜃;𝑌𝑡 |𝑋𝑡 = 𝑥𝑡 , 𝑥𝑡−1, 𝑦𝑡−1) (2.14)

According to [19], the objective is to find a feature 𝑥𝑡 that maximises the decrease in
expected posterior entropy and that will reduce the hypotheses class as fast as possible.
It is obvious by the definition of mutual information, MU is an upper bound on BALD.

Both of these criteria make sense in an intuitive manner but lack a clear justification
as a solution to some optimization problem. There is no clear concept what is the prior
of the model 𝜃 and no use of the prior on the test features, 𝑝(𝑥). Nevertheless, BALD is
used to produce very good results for active learning using deep neural network [36]
and [23]. Essentially, these criteria are more focused on model estimation and less on
prediction.

In order to relate BALD to UAL, for discrete valued labels 𝑌 , (2.12), becomes:

𝐼

(
𝜃;𝑌 |𝑋,𝑌𝑁 , 𝑋𝑁

)
≤ 𝐼 (𝜃;𝑌 |𝑋) +

𝑁∑︁
𝑖=1

𝐻 (𝑌𝑖 |𝑋𝑖, 𝑌 , 𝑋) − 𝐼
(
𝜃;𝑌𝑁 |𝑋𝑁

)
(2.15)
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which can be further simplified using the chain rule:

𝐼

(
𝜃;𝑌 |𝑋,𝑌𝑁 , 𝑋𝑁

)
≤ 𝐼 (𝜃;𝑌 |𝑋) + 𝑁 log2 ( |A|) −

𝑁∑︁
𝑖=1

𝐼

(
𝜃;𝑌𝑖 |𝑋𝑖, 𝑌 𝑖−1𝑋 𝑖−1

)
(2.16)

where 𝑌 ∈ A and |A| is the size of the alphabet of the random label 𝑌 .
We would like to minimize the upper bound on UAL. The first two terms in (2.16)

are constant and thus the minimization of the R.H.S is only performed on the third
term, which turns into a maximization of

∑𝑁
𝑖=1 𝐼

(
𝜃;𝑌𝑖 |𝑋𝑖, 𝑌 𝑖−1𝑋 𝑖−1) which is identical to

optimizing BALD. The approximation we took is to upper bound
∑𝑁
𝑖=1 𝐻 (𝑌𝑖 |𝑋𝑖, 𝑌 , 𝑋)

which provides correlation between the candidate points and the test set.
The same argument can be taken on MU since:

𝐼

(
𝜃;𝑌 |𝑋,𝑌𝑁 , 𝑋𝑁

)
≤ 𝐼 (𝜃;𝑌 |𝑋) + 2𝑁 log2 ( |A|) −

𝑁∑︁
𝑖=1

𝐻

(
𝑌𝑖 |𝑋𝑖, 𝑌 𝑖−1𝑋 𝑖−1

)
(2.17)

Therefore, UAL is a generalization of BALD and MU which takes into account test
data.

2.3 Active Learning for Linear Regression
In this section, UAL is applied to the linear regression hypothesis class. It is shown that
UAL aligns with commonly used criteria for this setting. This serves as an example
for the fact that UAL is a general framework for active learning and coincides with the
best known AL methods per hypothesis class. It will be shown (as expected) that for
this hypothesis class there is no need for oracle feedback but an offline subset selection
process can provide the optimal sample complexity result.

2.3.1 Linear Regression Model
We consider the problem of estimating a vector of unknown parameters 𝜃 ∈ R𝑝 from ob-
served measurements or experiments {𝑥

𝑖
, 𝑦𝑖}𝑛𝑖=1, assuming a linear relationship between

𝑥
𝑖

and 𝑦𝑖:
𝑦𝑖 = 𝑥

𝑇
𝑖
𝜃 + 𝑧𝑖, 𝑖 = 1, 2, ..., 𝑛 (2.18)

where 𝑥
𝑖
∈ R𝑝 is the i-th input feature vector, 𝑦𝑖 ∈ R is its corresponding output response

and 𝑧𝑖 ∼ N
(
0, 𝜎2) is zero-mean Gaussian noise.

If we stack the feature vectors 𝑥
𝑖

as rows in matrix 𝑋 ∈ R𝑛𝑥𝑝 and stack the output
responses 𝑦𝑖 as a column vector 𝑦 ∈ R𝑛, we can write the system of linear equations in
matrix form:

𝑦 = 𝑋𝜃 + 𝑧
where 𝑧 ∈ R𝑛 is a Gaussian noise vector with zero mean and a covariance matrix equal
to a scaled identity matrix (𝐸 [𝑧𝑧𝑇 ] = 𝜎2𝐼𝑛𝑛).

Under the Gaussian noise condition, the Maximum Likelihood estimator to a linear
regression problem is called the Ordinary Least Squares (OLS) solution:

�̂�
𝑂𝐿𝑆

=

(
𝑋𝑇𝑋

)−1
𝑋𝑇 𝑦 (2.19)
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The error 𝜖 = 𝜃 − �̂�
𝑂𝐿𝑆

is a random Gaussian vector and we can look at the mean and
covariance to characterize the OLS’s performance.

𝐸 [𝜖] = 𝐸 [𝜃 − �̂�
𝑂𝐿𝑆
]

= 𝐸 [𝜃 −
(
𝑋𝑇𝑋

)−1
𝑋𝑇

(
𝑋𝜃 + 𝑧

)
]

= 𝐸 [
(
𝑋𝑇𝑋

)−1
𝑋𝑇 𝑧] = 0

(2.20)

the fourth equality is due to the fact that the noise is assumed zero mean.
The error covariance is computed as follows:

𝐸 [𝜖𝜖𝑇 ] = 𝐸
((
𝑋𝑇𝑋

)−1
𝑋𝑇 𝑧

) ((
𝑋𝑇𝑋

)−1
𝑋𝑇 𝑧

)𝑇
= 𝐸

((
𝑋𝑇𝑋

)−1
𝑋𝑇 𝑧𝑧𝑇𝑋

(
𝑋𝑇𝑋

)−1
)
= 𝜎2

(
𝑋𝑇𝑋

)−1
𝑋𝑇𝑋

(
𝑋𝑇𝑋

)−1
= 𝜎2

(
𝑋𝑇𝑋

)−1

(2.21)

Note that 𝑋 might not be full rank (𝑟𝑎𝑛𝑘 (𝑋) ≤ 𝑝) and thus 𝑋𝑇𝑋 will not be
invertible. A common practice is to use diagonal loading to increase the rank of this
correlation matrix. This act is very common in signal processing and is equivalent to
assuming that the model vector is a Gaussian 𝜃 ∼ N

(
0, 𝜎2

𝜃
𝐼
)
. This prior is commonly

incorporated in linear regression models for regularization purposes.
After adding the power constraint on the model vector we get the robust version

of OLS. This can also be interpreted as the Maximum A Posteriori (MAP) solution or
equivalently in the Gaussian zero mean case, the MMSE solution:

�̂�
𝑀𝑀𝑆𝐸

= 𝐸

(
𝜃𝑦𝑇

)
𝐸

(
𝑦𝑦𝑇

)
𝑦 (2.22)

which is equivalent in the linear case to:

�̂�
𝑀𝑀𝑆𝐸

= 𝜎2
𝜃 𝑋

𝑇
(
𝜎2
𝜃 𝑋𝑋

𝑇 + 𝜎2𝐼
)−1

𝑦 = 𝑋𝑇

(
𝑋𝑋𝑇 + 𝜎

2

𝜎2
𝜃

𝐼

)−1

𝑦 (2.23)

Using SVD, we can write the MMSE estimator as:

�̂�
𝑀𝑀𝑆𝐸

=

(
𝑋𝑇𝑋 + 𝜎

2

𝜎2
𝜃

𝐼

)−1

𝑋𝑇 𝑦 (2.24)

The mean of the new estimator is of course biased per specific 𝜃 but is unbiased
when considering the prior on 𝜃:

𝐸 [𝜖] = 𝐸 [𝜃 − �̂�
𝑀𝑀𝑆𝐸

] = 𝐸 [𝜃 −
(
𝑋𝑇𝑋 + 𝜎2

𝜃 𝐼

)−1
𝑋𝑇

(
𝑋𝜃 + 𝑧

)
]

= 𝐸 [
(
𝐼 −

(
𝑋𝑇𝑋 + 𝜎2

𝜃 𝐼

)−1
𝑋𝑇𝑋

)
𝜃 +

(
𝑋𝑇𝑋 + 𝜎2

𝜃 𝐼

)−1
𝑋𝑇 𝑧] = 𝐸 [

(
𝑋𝑇𝑋 + 𝜎2

𝜃 𝐼

)−1
𝑋𝑇 𝑧] = 0

(2.25)
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where the fourth equality is due to the fact that the noise is assumed zero mean.
The error covariance is computed using the standard MMSE identities:

𝐸 [𝜖𝜖𝑇 ] = 𝐸
(
𝜃𝜃𝑇

)
− 𝐸

(
𝜃𝑦𝑇

)
𝐸

(
𝑦𝑦𝑇

)−1
𝐸

(
𝑦𝜃𝑇

)
= 𝜎2

𝜃 𝐼 − 𝜎2
𝜃 𝑋

𝑇
(
𝜎2
𝜃 𝑋𝑋

𝑇 + 𝜎2𝐼
)−1

𝑋𝜎2
𝜃

= 𝜎2
𝜃

©«𝐼 −
(
𝑋𝑇𝑋 + 𝜎

2

𝜎2
𝜃

𝐼

)−1

𝑋𝑇𝑋
ª®¬

(2.26)

We can see that for 𝜎2 = 0, then the error covariance will be zero as expected.
The above analysis was done for model estimation, meaning that we wish to estimate

𝜃 as best as possible. However, as indicated earlier, in real world machine learning
applications, we are more interested in the prediction error on the test matrix 𝑋𝑡𝑒𝑠𝑡 and
its corresponding responses 𝑦

𝑡𝑒𝑠𝑡
.

The prediction error for OLS is:

𝐸 [∥𝑦
𝑡𝑒𝑠𝑡
− �̂�

𝑂𝐿𝑆
∥2] = 𝐸 [∥𝑋𝑡𝑒𝑠𝑡𝜃 − 𝑋𝑡𝑒𝑠𝑡 �̂�𝑂𝐿𝑆∥

2]

= 𝐸 [∥𝑋𝑡𝑒𝑠𝑡
(
𝜃 − �̂�

𝑂𝐿𝑆

)
∥2] = 𝜎2𝑇𝑟{𝑋𝑡𝑒𝑠𝑡

(
𝑋𝑇𝑋

)−1
𝑋𝑇𝑡𝑒𝑠𝑡}

(2.27)

Respectively, the prediction error for the MMSE estimator (Regularized):

𝐸 [∥𝑦
𝑡𝑒𝑠𝑡
− �̂�

𝑀𝑀𝑆𝐸
∥2] = 𝐸 [∥𝑋𝑡𝑒𝑠𝑡𝜃 − 𝑋𝑡𝑒𝑠𝑡 �̂�𝑀𝑀𝑆𝐸 ∥

2]

= 𝐸 [∥𝑋𝑡𝑒𝑠𝑡
(
𝜃 − �̂�

𝑀𝑀𝑆𝐸

)
∥2] = 𝑇𝑟

{
𝑋𝑡𝑒𝑠𝑡𝜎

2
𝜃

©«𝐼 − 𝑋𝑇
(
𝑋𝑋𝑇 + 𝜎

2

𝜎2
𝜃

𝐼

)−1

𝑋
ª®¬ 𝑋𝑇𝑡𝑒𝑠𝑡

}
(2.28)

Note that:

𝜎2
𝜃 𝐼 − 𝜎2

𝜃 𝑋
𝑇

(
𝜎2
𝜃 𝑋𝑋

𝑇 + 𝜎2𝐼
)−1

𝑋𝜎2
𝜃 =

(
1
𝜎2
𝜃

𝐼 + 𝜎−2𝑋𝑇𝑋

)−1

(2.29)

𝐸 [∥𝑦
𝑡𝑒𝑠𝑡
− �̂�

𝑀𝑀𝑆𝐸
∥2] = 𝑇𝑟

{
𝑋𝑡𝑒𝑠𝑡

(
1
𝜎2
𝜃

𝐼 + 𝜎−2𝑋𝑇𝑋

)−1

𝑋𝑇𝑡𝑒𝑠𝑡

}
(2.30)

Therefore, the two error covariance matrices are very similar (up to regularization
factor) and we will use them in order to optimize the design matrix.

2.3.2 Optimal Design of Experiments
Optimal design of experiments [37] is a branch of mathematical statistics that involves
finding the best way to design an experiment in order to achieve certain objectives, such
as minimizing the variance of the estimated parameters or maximizing the precision of
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the estimates. In this field, the design of an experiment is considered to be optimal if it
provides the most information with the fewest observations or measurements.

The goal of optimal design is to find a design matrix that will provide the most
information about the parameters of interest. This is typically done by minimizing
some measure of the variance of the estimated parameters, such as the determinant of
the covariance matrix or the trace of the inverse of the covariance matrix. One of the
fundamental concepts in the optimal design of experiments is the concept of a design
matrix. A design matrix is a matrix of values that specifies the values of the independent
variables or factors that are to be varied in an experiment. The rows of the design matrix
correspond to the experimental units or observations, while the columns correspond to
the independent variables or factors.

The classical experimental design is defined as selecting a small subset 𝑆 ⊂ {1, ..., 𝑛}
of 𝑟 rows: 𝑋𝑆, from 𝑋 so that estimating 𝜃 is optimized on the selected design 𝑋𝑆. Using
the selected training set, one can derive the OLS solution for the parameter vector 𝜃.
Since we are looking for 𝑆 such that 𝑋𝑆 is most statistically efficient, the optimal design
problem reduces to minimizing the inverse covariance matrix (as we saw earlier for the
error covariance):

Σ−1 =

(
𝑋𝑇𝑆 𝑋𝑆

)−1

Optimal design can be done using a variety of techniques, including algebraic
optimization, numerical optimization, and Bayesian methods. These techniques involve
finding a design matrix that maximizes some criterion, such as the determinant of
the information matrix, which is a measure of the amount of information that can be
obtained from the experiment. In [37] several optimality criteria have been described for
measuring how well Σ−1 is minimized on a selected design 𝑋𝑆. Some common criteria
include A-optimality, V-optimality, and D-optimality. In [38], performance guarantees
for the greedy solution of experimental design problems are provided. In particular,
it focuses on A optimal designs, for which typical guarantees do not apply since the
mean-square error of the estimation error covariance matrix is not sub-modular. In the
next sections we present several optimal design criteria.

2.3.2.1 A Optimal Design

A-optimal design is a criterion for the optimal design of experiments that seeks to mini-
mize the trace of the inverse of the covariance matrix of the estimated parameters. The
covariance matrix measures the variability of the estimated parameters, and minimizing
its trace ensures that the estimates are as precise as possible.

More specifically, let 𝑌 be a vector of observations or measurements that depend on
a vector of unknown parameters 𝜃, and let 𝑋 be a design matrix that specifies the values
of the independent variables or factors in the experiment. The goal of A-optimal design
is to find a design matrix 𝑋 that minimizes the trace of the inverse of the covariance
matrix of the estimated parameters, denoted by (𝑋𝑇𝑋)−1.

Therefore, the A-optimal design criterion can be formulated as the following opti-
mization problem:

�̂� = arg min
𝑋
𝑇𝑟

(
(𝑋𝑇𝑋)−1

)
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subject to some constraints on 𝑋 , such as the number of observations or the range of
the independent variables.

The trace of the inverse of the covariance matrix can then be written as:

𝑇𝑟 ((𝑋𝑇𝑋)−1) = Σ
𝑝

𝑖=1
1
𝜆𝑖

where 𝜆𝑖 are the eigenvalues of (𝑋𝑇𝑋)−1.
This problem can be solved using various optimization techniques, such as linear

programming, quadratic programming, or convex optimization. The resulting design
matrix X provides the optimal allocation of resources to the different parts of the
experiment, in order to obtain the most precise estimates of the parameters of interest.

2.3.2.2 V Optimal Design

V-optimal design is a criterion for the optimal design of experiments that seeks to
minimize the average prediction variance, i.e. the variance of the prediction vari-
able 𝑌 . Therefore, the V-optimal design criterion can be formulated as the following
optimization problem:

�̂� = arg min
𝑋
𝑇𝑟

(
𝑋𝑡𝑒𝑠𝑡 (𝑋𝑇𝑋)−1𝑋𝑇𝑡𝑒𝑠𝑡

)
where 𝑋𝑡𝑒𝑠𝑡 is a matrix whose rows are different features from a test set. The idea is to
minimize the average prediction error on the test set. This problem can be solved using
various optimization techniques, such as linear programming, quadratic programming,
or convex optimization.

2.3.2.3 D Optimal Design

D-optimal design is a criterion for the optimal design of experiments that seeks to
minimize the determinant of Σ−1, which is proportional to the volume of the confidence
ellipsoid (for a fixed confidence level). Thus, D-optimality shrinks the ellipsoid in all
directions in order to minimize total volume:

�̂� = arg min
𝑋

det
(
𝑋𝑇𝑋

)−1

subject to some constraints on 𝑋 , such as the number of observations or the range
of the independent variables. Equivalently, one can maximize the determinant of the
information matrix 𝑋𝑇𝑋 .

D-optimal design is known for its efficiency and effectiveness in providing high-
quality data for complex models. However, finding D-optimal designs can be compu-
tationally intensive, as it involves solving a non-linear optimization problem. Despite
this, the benefits of achieving high precision in parameter estimation make D-optimal
design a popular choice in many scientific and engineering applications.
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2.3.3 Universal Active Learning for Linear Regression
The goal of active learning in this setting is to pick a small number of feature vectors,
𝑥𝑁 , from the space of possible features so that the underlying model, which relates input
variables to output responses, is estimated accurately. As we saw in the last section,
the linear regression model has the property that the error covariance matrix depends
on neither the true parameter vector 𝜃 nor the observed response 𝑦. This suggests that
we can “optimize” the covariance of the estimator a-priori, even before taking any
measurements, transforming the problem from interactive querying an oracle to subset
selection of feature vectors.

In the following theorem, we find an expression for UAL using the linear regres-
sion hypothesis class. We define the linear regression hypothesis class with a power
regularization factor.

Theorem 3. Consider the hypothesis class:

𝑃Θ = {𝑝 (𝑦 |𝑥, 𝜃) |𝜃 ∈ R𝑑 ,E (𝜃) = 0, 𝑇𝑟
(
E

(
𝜃𝜃𝑇

))
≤ 𝜎2

𝜃 }

𝑝 (𝑦 |𝑥, 𝜃) = 1
√

2𝜋𝜎2
exp

(
− 1

2𝜎2

(
𝑦 − 𝑥𝑇𝜃

)2
)

where 𝑥 ∈ R𝑑 and 𝜎2 is known a-priori.

Then UAL is equivalent to the following subset selection problem:

𝐶𝑛 = min
𝑥𝑛
𝑇𝑟

©«E
(
𝑥
𝑡𝑒𝑠𝑡
𝑥𝑇
𝑡𝑒𝑠𝑡

) (
𝑋𝑇𝑛 𝑋𝑛 +

𝜎2

𝜎2
𝜃

𝐼𝑑

)−1ª®¬
where 𝑋 and 𝑋𝑛 are the concatenation of the test vectors and the concatenation of

the training vectors respectively.

The full proof is in appendix A.3.

Remark 3. An interesting result of Theorem 3 is that for linear regression, there is a
closed form solution for the conditional capacity minimization (UAL). More importantly,
the capacity achieving distribution, 𝜋(𝜃) is a Gaussian with zero mean and covariance
𝜎2
𝜃
𝐼. When we will consider other hypothesis classes, this will not be the case and the

capacity achieving distribution will be very difficult to derive.

One can notice that UAL in this case is equivalent to (2.30) and V-optimal design (up
to a regularization factor). This is interesting since UAL was derived as a general active
learning criterion, not specific to any hypothesis class. The equivalence to V-optimal
design shows that once an hypothesis class is selected, UAL will converge to a well
known criterion which was designed specifically to that family. The criterion is also
equivalent to the transductive experimental design proposed heuristically in [39] and
UAL has provided the mathematical reasoning for this criterion.

Note that this criterion is a function of the training features 𝑥𝑛 only and has no
dependence on their respective labels 𝑦𝑛. Therefore, there is no real need for online

22



feedback in the active linear regression problem and the training set problem can be
cast as a subset selection problem performed offline. This problem is NP hard and thus
approximate solutions are needed.

Remark 4. If we take BALD and MU for linear regression, we observe that BALD will
sequentially maximize the conditional mutual information 𝐼

(
𝜃; 𝑦𝑛 |𝑥𝑛

)
. It is not clear

which prior 𝜋(𝜃) should be used for BALD since this was not addressed in [19]. Thus,
we will use the same prior used in UAL and the same entropy calculation to get the
respective BALD criterion:

min
𝑥𝑛

𝐼
(
𝜃; 𝑦𝑛 |𝑥𝑛

)
= min

𝑥𝑛
log det

(
𝑄

(
𝑥𝑛

) )
(2.31)

BALD converges to D-optimal design [37]. Note that D-optimal design is a sub-
modular objective and thus greedy optimisation, as BALD suggests, will provide a close
to optimal solution [38].

In conclusion, UAL and BALD converge to two different experimental design criteria
which are suited for different applications as described in [37]. Note that MU in this
case will be identical to BALD since ℎ(𝑦𝑡 |𝑥𝑡 , 𝜃, 𝑥𝑡−1, 𝑦𝑡−1) = ℎ(𝑧), and is not a function
of the trianing set.

2.4 Gaussian Process Classification
In this section, UAL is compared to BALD, MU and passive learning in an empirical
test using Gaussian Process Classification (GPC) over a synthetic data set. Note that
GP’s are essentially an assumption on the prior of the model parameters and therefore
the alternative formulation of the minimax regret is taken with a specific given prior.
GP’s are a powerful and popular non-parametric tool for regression and classification
and a detailed introduction to them can be found in [40].

2.4.1 Gaussian Process
A Gaussian process is a statistical method which allows for supervised regression of
data. Classification of data is also possible, but needs extra computations through
approximations which are not Gaussian. The Gaussian process is named after the
Gaussian probability distribution, from which it is a generalization [40]. A Gaussian
process describes a distribution over functions. Every point of a continuous input space
is associated with a normally distributed random variable. The joint distribution of all
these random variables is the distribution of the Gaussian process.

The theoretical foundation for Gaussian processes was already formulated in the
1940’s with Wiener-Kolgomorov predictions and time series analysis. In 1978 Gaussian
processes were introduced to one-dimensional curve fitting by O’Hagan [41, 42].
Gaussian processes were popularized in machine learning in the 1990’s by the upcoming
of backpropagation in neural networks and the introduction of a Bayesian framework
[43, 44]. Gaussian processes were developed independently in geo-spatial sciences
in the 1950’s with the name Kriging [45]. Gaussian processes as statistical methods
have a direct relationship to Machine Learning algorithms. Neal showed that large
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Neural Networks converge eventually to Gaussian processes [44]. GP advocates
sometimes claim that the equivalent model for a neural network as a Gaussian process
would be easier to handle and interpret than the neural network [46], since the models
are analytical tractable [47]. Furthermore, GPs perform well on binary classification
problems and score results comparable to neural networks. A major disadvantage of a
Gaussian process is the computational effort. The implementation features inversions
of matrices of the size 𝑛𝑥𝑛 where 𝑛 is the number of points where the Gaussian process
is evaluated. Using standard linear algebra techniques, the inversion of this matrix has
complexity 𝑂 (𝑛3).

The Gaussian process is a generalization of the Gaussian distribution. The mean
vector is replaced with a mean function and the covariance matrix is replaced with a
covariance function. It is a stochastic process specified by its mean function 𝜇 and
covariance function 𝑘:

𝜇 (𝑥) = E{ 𝑓 (𝑥)}

𝑘 (𝑥, 𝑥) = E{ 𝑓 (𝑥 − 𝜇(𝑥)) 𝑓 (𝑥 − 𝜇(𝑥))}

where 𝑥 is a input.
The notation for a Gaussian process

𝑓 ∼ 𝐺𝑃(𝜇(·), 𝑘 (·, ·))

where 𝑓 is a function that is distributed as a Gaussian process.
The Gaussian process is defined by the mean function 𝜇 and the covariance function

𝑘 . The mean function 𝜇(𝑥) describes the mean value for every dimension. During
preprocessing, the input data is usually centred around the origin of the coordinate
system. The covariance function describes the similarity of two data points as a scalar.
The notion of similarity is essential in machine learning problems, since similar inputs
usually yield similar outputs and the applied covariance function should reflect this.
According to Rasmussen and Williams the covariance function “is the crucial ingredient
in a Gaussian process predictor, as it encodes our assumptions about the function we
wish to learn.” [46]. Mathematically, the covariance function is defined on a pair of
inputs and can be any positive semi-definite function 𝑘 (𝑥, 𝑥). The output is scalar and
symmetric: 𝑘 (𝑥, 𝑥) = 𝑘 (𝑥, 𝑥). In the literature, alternative names for the covariance
function are kernel or kernel function.

The squared exponential kernel:

𝑘 (𝑥, 𝑥) = 𝑒𝑥𝑝
(
|𝑥 − 𝜇(𝑥) |2

2𝛼2

)
with 𝛼 as length scale is a covariance function that satisfies the previous properties.
The squared exponential covariance function is a widely used kernel in the machine
learning field and is useful when the unknown function that GP tries to model is smooth.
The hyper-parameter 𝛼 is a length scale which indicates when the two inputs of the
covariance function become uncorrelated.
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2.4.2 Active Learning with GP
In [19], BALD was analyzed using GPC and compared to other active learning algo-
rithms including MU. In this section, the same mathematical model and approximations
as in [19] are used and repeated again for clarity.

The probabilistic model underlying GPC is as follows:

𝑓 ∼ 𝐺𝑃(𝜇(·), 𝑘 (·, ·))
𝑦 |𝑥, 𝑓 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 (Φ ( 𝑓 (𝑥)))

(2.32)

where the parameter 𝑓 , is a function of a feature point 𝑥 and is assigned a Gaussian
process prior with mean 𝜇(·) and covariance function 𝑘 (·, ·). The label 𝑦 is Bernoulli
distributed with probability Φ( 𝑓 (𝑥)), where Φ is the Gaussian CDF.

Inference in GPC is intractable, since given a training set, the posterior over 𝑓 (per
feature 𝑥) becomes non-Gaussian and complicated. In the following test, Expectation
Propagation (EP) [48] was used for approximating this posterior.

UAL requires the computation of 𝐼 ( 𝑓 ; 𝑦 |𝑥, 𝑥𝑛, 𝑦𝑛), which can be written using the
mutual information chain rule as:

𝐼 ( 𝑓 ; 𝑦 |𝑥, 𝑥𝑛, 𝑦𝑛) = 𝐼 ( 𝑓 ; 𝑦 |𝑥) + 𝐼 ( 𝑓 ; 𝑦𝑛 |𝑥, 𝑦, 𝑥𝑛) − 𝐼 ( 𝑓 ; 𝑦𝑛 |𝑥𝑛) (2.33)

Since 𝐼 ( 𝑓 ; 𝑦 |𝑥) is a constant value and assuming 𝑧𝑛−1 = {𝑥𝑛−1, 𝑦𝑛−1} is known:

arg min
𝑥𝑛

𝐼 ( 𝑓 ; 𝑦 |𝑥, 𝑥𝑛, 𝑦𝑛) = arg min
𝑥𝑛
{𝐼 ( 𝑓 ; 𝑦𝑛 |𝑥, 𝑦, 𝑥𝑛, 𝑦𝑛−1) − 𝐼 ( 𝑓 ; 𝑦𝑛 |𝑥𝑛, 𝑦𝑛−1)} (2.34)

We will first approximate 𝐼 ( 𝑓 ; 𝑦𝑛 |𝑥𝑛, 𝑦𝑛−1) using the difference between conditional
entropies. Following the definition of entropy:

𝐻 (𝑦𝑛 |𝑥𝑛, 𝑧𝑛−1) = 𝐻
(∫

𝑝
(
𝑦𝑛 |𝑥𝑛, 𝑓𝑥𝑛

)
𝑝

(
𝑓𝑥𝑛 |𝑧𝑛−1

)
𝑑𝑓𝑥𝑛

)
= 𝐻

(∫
Φ

(
𝑓𝑥𝑛

)
N

(
𝑓𝑥𝑛 |𝜇𝑥𝑛,𝑧𝑛−1 , 𝜎2

𝑥𝑛,𝑧
𝑛−1

)
𝑑𝑓𝑥𝑛

) (2.35)

where 𝜇𝑥𝑛,𝑧𝑛−1 and 𝜎2
𝑥𝑛,𝑧

𝑛−1 are the mean and variance of the Gaussian approximation
(using EP for example) for the posterior 𝑝( 𝑓𝑥𝑛 |𝑧𝑛−1).

Using standard results for integrals with Gaussian functions:

𝐻 (𝑦𝑛 |𝑥𝑛, 𝑧𝑛−1) = 𝐻
©«Φ

©«
𝜇𝑥𝑛,𝑧𝑛−1√︃
𝜎2
𝑥𝑛,𝑧

𝑛−1 + 1

ª®®¬
ª®®¬ (2.36)

Next, we compute:

𝐻 (𝑦𝑛 |𝑥𝑛, 𝑓𝑥𝑛 , 𝑧𝑛−1) =
∫

𝐻
(
𝑝

(
𝑦𝑛 |𝑥𝑛, 𝑓𝑥𝑛

) )
𝑝

(
𝑓𝑥𝑛 |𝑧𝑛−1

)
𝑑𝑓𝑥𝑛

=

∫
𝐻

(
Φ

(
𝑓𝑥𝑛

) )
𝑝

(
𝑓𝑥𝑛 |𝑧𝑛−1

)
𝑑𝑓𝑥𝑛

(2.37)
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We will use the Taylor approximation described in [19], 𝐻 (Φ ( 𝑓𝑥)) ≈ 𝑒𝑥𝑝
(
− 𝑓 2

𝑥

𝜋 ln 2

)
and using Gaussian integrals identities:

𝐻 (𝑦𝑛 |𝑥𝑛, 𝑓𝑥𝑛 , 𝑧𝑛−1) ≈
∫

𝑒𝑥𝑝

(
−

𝑓 2
𝑥𝑛

𝜋 ln 2

)
𝑝

(
𝑓𝑥𝑛 |𝑧𝑛−1

)
𝑑𝑓𝑥𝑛

=
𝐶√︃

𝜎2
𝑥𝑛,𝑧

𝑛−1 + 𝐶2
𝑒

©«
−𝜇2

𝑥𝑛,𝑧
𝑛−1

2
(
𝜎2
𝑥𝑛,𝑧

𝑛−1+𝐶
2
) ª®¬

(2.38)

where 𝐶 =

√︃
𝜋 ln 2

2 .
Therefore, we can write the mutual information as a difference between two en-

tropies:
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UAL minimizes the difference between two mutual information measures as de-
scribed in (2.34). The first was approximated above and we can use the same approxi-
mations for the second:

𝐼

(
𝑓 ; 𝑦𝑛 |𝑥𝑛, 𝑥, 𝑦, 𝑧𝑛−1
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)
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where:
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The final UAL approximation for GPC:
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where:
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where we approximated the expectation over 𝑥 as a sum of 𝑁 random samples and
𝐷 = {𝑥, 𝑦, 𝑧𝑛−1}. This means that for each samples test point 𝑥 we need to train the
GPC with all possible labels and the available data.
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Figure 2.1: Training Set, different colors indicate the label of each feature

2.4.3 Simulation Results

In this section, we will analyze the performance of UAL for GPC under a synthetic
example. The synthetic data set consists of two dimensional feature vectors with binary
labels as shown in Figure 2.1, where the yellow color indicates ’-1’ label and blue is
’+1’. In Figure 2.2, the test set is shown and is basically a smaller sub-set of the feature
space. This simulates a scenario where the test is concerned with a particular region of
the feature space and there is no real need to learn the whole labeling function which
may be very complex and require many data points.

In practice, there may be a pre-processing stage which prunes the training set from
data point which are irrelevant to the test, but this requires domain knowledge regarding
the similarity between data points. The main strength of UAL, is that it implicitly takes
into account the unlabelled test data to improve the resulting classifier.

The unlabelled test set is given to the learner along with an initial labelled training
set and the active selection of training data starts. The labelled training data consisting
of 50 random initial training data points. The active learning process is performed by
adding a new data point each iteration based on the different criteria.

In Figure 2.3, for each iteration, the error probability on the test set is plotted. It
can be observed that passive learning has the worst performance in terms of sample
complexity given error probability. BALD and MU have comparable performance since
they do not utilize the test set features and simply sample the boundary curve at multiple
locations.
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Figure 2.2: Test Set, different colors indicate the label of each feature

In Figure 2.4 one can see a large concentration of training point in the test set region
since UAL takes into account the test set distribution. Also in the same figure, the
contours of the predictive probability for each test point is plotted. We can see good fit
to the test set as depicted in Figure 2.2.
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Chapter 3

Linear Separators with Label Noise

In this chapter, learning half-spaces in R𝑛 is considered. This learning problem is
probably the most well studied for active learning with well established bounds and
algorithms for different label noise models and feature priors. In [15], the authors
present an algorithm which achieves near optimal sample complexity for a noiseless
Oracle. The algorithm uses a margin based active learning criterion. This algorithm
performs well under low noise conditions and log-concave feature distributions. In [49],
an efficient Perceptron-based algorithm for active learning homogeneous half-spaces
under the uniform distribution over the unit sphere was proposed. This algorithm
performs well also under the bounded noise condition [50], where each label is flipped
with probability at most 𝜂 ≤ 0.5. In [51], a margin based algorithm is presented
which handles bounded noise using a polynomial regression approach for shrinking the
disagreement region.

However, all these algorithms achieve good sample complexity only under log
concave feature priors and symmetric binary noise models, i.e:

𝑃(𝑦 = 1|𝑥 ≥ 𝜃) = 𝑃(𝑦 = 0|𝑥 ≤ 𝜃)

In this section, we would like to address a general case of noisy Oracles for learning
hyper-planes. We will present a low complexity algorithm for learning half planes in
R𝑛 and show that the minimax regret decays exponentialy fast to zero.

The model for the noisy Oracle is based on an hypotheses class composed of a one
dimensional linear separator with threshold 𝜃0, followed by a BAC (Binary Asymmetric
Channel) with parameters (𝑝, 𝑞), as described in Fig. (3.1). The higher dimensional
linear separator is generalized accordingly. The parameters 𝑝, 𝑞 are assumed in this
work to be known a-priori and it could be for future work to address the joint estimation
of 𝜃, 𝑞 and 𝑝 using active learning.

The algorithm which will be developed in this section can handle any Discrete
Memory-less Channel (DMC) noise which can be asymmetric as shown in Fig. (3.1).
Also, we will not use the assumption of log-concave feature priors since our algo-
rithm will not randomly draw features from the pool and thus eliminate the need for
log-concavity of this prior. The algorithm proposed will have a polynomial compu-
tational complexity making it usable for real-world usage. Finally, the achievable
performance for UAL in the linear separator hypothesis class is examined with the
proposed algorithm.
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Figure 3.1: Noisy Asymmetric One Dimensional Linear Separator

3.1 Communication with Noiseless Feedback and the
Posterior Matching Scheme

The problem of active learning a classifier with a noisy oracle is closely related to
communication over a noisy binary channel with noiseless feedback. In this section, we
will discuss this relationship and provide a short overview of Posterior Matching [52],
which is a capacity achieving transmission scheme which utilizes noiseless feedback.

In the world of communications theory the problem of achieving capacity in noisy
binary channels is well studied, where the underlying objective is to develop coding
and decoding schemes which approach zero error probability as the block length grows.
In order to achieve transmission at capacity approaching rates, one needs to develop
complex channel codes and employ computationally intensive decoding algorithms.
Feedback cannot increase the capacity of memoryless channels as proved by Shannon,
but utilization of noiseless feedback can boost reliability, allow rate adaptation to cope
with unknown channels and significantly simplify transmission schemes. In Figure
3.2, a general setup for communication over noisy channels via noiseless feedback is
described. We note that the transmitter is described by a function of the message 𝜃0 and
the previously received channel outputs 𝑦𝑡−1.

In [53], Horstein presented a simple feedback utilising scheme for the Binary
Symmetric Channel (BSC). In that work, information is represented by a uniformly
distributed message point, 𝜃0 over the unit interval, its binary expansion representing an
infinite random binary sequence. The message point is conveyed to the receiver in an
increasing resolution by always indicating whether it lies to the left or to the right of its
posterior distribution’s median, which is also available to the transmitter via feedback.
This, in analogy to active learning, is to transmit the point which answers the most
informative binary question that can be posed by the receiver based on its received
information. Bits from the binary representation of the message point are decoded
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Figure 3.2: Communication over Noisy Channel with Noiseless Feedback Block Dia-
gram

by the receiver whenever their respective intervals accumulate a sufficient posterior
probability mass.

In [52], Shayevitz and Feder showed that Horstein’s method is a specific instance of
a more general approach which they called Posterior Matching (PM). This scheme uti-
lizes the noiseless feedback to achieve capacity for any Discrete Memory-less Channel
(DMC). The flow of PM is as follows: At each time instance, the transmitter computes
the posterior distribution of the message point given the receiver’s observations. Ac-
cording to the posterior, it “shapes” the message point into a random variable that is
independent of the receiver’s observations and has the desired input distribution, and
transmits it over the channel. Intuitively, this random variable captures the information
still missing at the receiver, described in a way that best matches the channel input.
In the special cases of a BSC with uniform input distribution, PM is reduced to to
Horstein’s scheme. The PM scheme is defined for a channel input and output 𝑋 and 𝑌
respectively with known prior and channel transition probability law: 𝑃(𝑥) and 𝑃(𝑌 |𝑋)
respectively. As with active learning, the channel output 𝑌𝑡 is passed to the transmitter
via noiseless feedback and helps the PM scheme to generate a new channel input 𝑋𝑡 .
The receiver can then use all the received signals 𝑌 𝑡 to generate an estimate of the
message 𝜃0. The block diagram for PM is described in Figure 3.3 where the next
channel input is given by:

𝑋𝑡+1 = 𝐹−1
𝑋

(
𝐹𝜃0 |𝑌 𝑡

(
𝜃0 |𝑌 𝑡

) )
(3.1)

where 𝐹𝑋 , 𝐹𝜃0 |𝑌 𝑡 and 𝜃0 are c.d.f’s and the message respectively.
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Figure 3.3: Communication via Posterior Matching

3.2 One Dimensional Noisy Linear Separator
Returning to the learning problem, in Fig. 3.4 the basic flow diagram of the learning
problem is shown and the dashed boxes represent the different components (Learner
and Oracle). The feature 𝑥𝑡 is selected by a selection policy 𝜙 based on the past training.
This feature is passed through a one dimensional linear separator, generating a single
bit, representing the true label associated with this feature. This label is passed through
a noisy channel and this is basically the mechanism generating the training features and
labels.

The flow in Fig. 3.4 can also be viewed as communicating the threshold (message)
𝜃0 over a noisy channel, 𝑝(𝑦𝑡 |𝑣𝑡), with noiseless feedback as shown in Fig. 3.2 [2].
Therefore, the noisy oracle can be viewed as part of the transmitter and noisy channel
as denoted by the densely dotted boxes. The transmitter’s output is the "clean" label
bit generated by some feedback driven coding scheme. In order to have as few oracle
labeling operations as possible, the objective will be that the Oracle "transmit" as much
information over as few channel uses over the noisy channel as possible and correctly
decode and recover 𝜃0. The input to the noisy Oracle can be viewed as a coding function
on a message 𝜃0 and then transmission through the noisy channel. This is exactly the
same as designing a transmission scheme which achieves capacity over this channel.
Therefore, if we use the same scheme as in Figure 3.3, we will transmit 𝜃0 at capacity
which effectively means as much information per channel use/ oracle label.

In the next theorem, it is shown that active learning based on PM (with appropriate
input channel distribution) produces a selection policy such that the active learning
criterion for the one dimensional threshold decays exponentially fast to zero. Moreover,
this result provides an exponent for the decay of (5), which is equivalent to the Shannon
capacity of the noisy channel (𝑊) - 𝐶𝑊 . The main benefit of using PM is that the noisy
channel is any arbitrary DMC.
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Figure 3.4: 1-Dimensional Noisy Linear Separator Block Diagram

Theorem 4. The 1-dimensional barrier hypotheses class is defined as:

𝑝(𝑣 |𝑥, 𝜃) =
{
1 if 𝑥 > 𝜃
0 otherwise

(3.2)

where the input is 𝑥, output is 𝑣 and the threshold is 𝜃. The output, 𝑣, is the input to a
Binary Asymmetric Channel (BAC) with output, 𝑦, as defined in Figure 3.5 and ∀𝑥 ∈ 𝑋 ,
𝑝(𝑥) ≤ 𝛼.

PM induced active learning produces a selection policy such that:

lim
𝑛→∞

𝐼 (𝜃;𝑌 |𝑋, 𝑥𝑛, 𝑦𝑛) = O
(
2−𝑛𝐶𝑊

)
where 𝐶𝑊 is the Shannon capacity of the BAC channel 𝑊 and 𝜋(𝜃) is a uniform
distribution on the appropriate interval.

The proof is detailed in Appendix A.4.

Remark 5. What happens if 𝑝 and 𝑞 are unknown? For the Binary Symmetric Channel
(BSC), if there exists an upper bound on 𝑝, then one can transmit, in principle, at any
rate below the capacity derived from this upper bound. More generally, this is proved
in Theorem 8 in [54] under the discussion on Mismatch Achievability. In that theorem,
Shayevitz and Feder prove that when the true channel is 𝑝(𝑌 ∗ |𝑋∗) and induces some
stationary input distribution 𝑝(𝑋∗). Then a scheme designed for a pair of an input
distribution 𝑝(𝑋) and a noisy channel 𝑝(𝑌 |𝑋) will have a penalty in the rate (relative
to 𝐼 (𝑋∗;𝑌 ∗)) given by: 𝐷 (𝑝(𝑌 ∗ |𝑋∗) | |𝑝(𝑌 |𝑋) |𝑝(𝑋∗)) − 𝐷 (𝑝(𝑌 ∗) | |𝑝(𝑌 )), where 𝐷 is
the Kullback-Leibler divergence. Therefore, one can use PM with a mismatched prior
and channel model and achieve a rate which is lower than the actual capacity of the
channel.
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In Theorem 4, the prior 𝜋(𝜃) is chosen to be uniform since the convergence of PM
to the correct message 𝜃 is guaranteed for a uniform prior on the messages. However,
the mutual information maximizing prior 𝜋∗(𝜃) of (5) may not be uniform. In the next
theorem, it is proven that when using the capacity achieving prior and the training set
selected by PM (using uniform prior), UAL still decays to zero at the same exponential
rate.

Theorem 5. Given a training set (𝑥𝑛, 𝑦𝑛) selected by PM using a uniform prior 𝜋𝑢 (𝜃)
and

𝜋∗(𝜃) = argmax
𝜋(𝜃)

𝐼 (𝑌 ; 𝜃 |𝑋,𝑌 𝑛, 𝑋𝑛)

Then,
lim
𝑛→∞

𝐼 (𝜃;𝑌 |𝑋, 𝑥𝑛, 𝑦𝑛) = O
(
2−𝑛𝐶𝑊

)
where the conditional mutual information above is computed using the prior 𝜋∗(𝜃)

This theorem basically means that the uniform prior is as good as the capacity
achieving prior. Theorem 4 confirms that UAL behaves similarly to other criteria in the
one dimensional linear separator hypothesis class. Moreover, the decay factor for this
convergence is provided, which is the Shannon capacity of the noisy channel. In the
next section, higher dimensional linear separators will be addressed and the exponential
decay of UAL will be demonstrated using a novel active learning algorithm.

3.3 Active Learning Hyper-planes via Successive Poste-
rior Matching

In this section, a label efficient, low complexity algorithm for active learning high
dimension linear separators with noisy labels under bounded prior distributions is
proposed. The basic idea is to successively localize the spherical coordinates of the
normal vector 𝑤, representing the linear separator, using PM. This algorithm, which is
denoted as Successive Posterior Matching (SPM) achieves an exponential improvement
over passive learning in label complexity with the label noise channel capacity divided
by the dimension as the exponent’s decay coefficient.

In this setup, the features 𝑥 ∈ R𝑑 are assumed to have a bounded feature distribution,
𝑝(𝑥) ≤ 𝛼, for all 𝑥. The hypotheses class contains all possible homogeneous hyper-
planes with normal vector 𝑤. The relation between feature 𝑥 and label 𝑣 is defined as
follows,

𝑝(𝑣 |𝑥, 𝑤) =
{
1 if 𝑤𝑇𝑥 > 0
0 otherwise

(3.3)

However, labeling may be a noisy process and the oracle may make errors. The
noisy label 𝑦, outputted by the oracle is modeled as the output of a binary asymmetric
channel detailed graphically in Fig. 3.5. It is important to note here that the proposed
algorithm SPM can also work for a noisy channel with 𝐾 ≥ 2 possible output labels
and the binary channel is used here for simplicity purposes.

It is assumed that the parameters of the noisy channel 𝑝, 𝑞 are known a-priori
and can be different. SPM is detailed in Algorithm 1, where the estimations of the
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Figure 3.5: Binary Asymmetric Channel

spherical coordinates of 𝑤 are denoted by 𝜃. In Figure 3.6, we can see an example of
a two dimensional plane and its normal vector which needs to be estimated. In the
initialization stage, each entry in 𝜃, is set to 𝜋

2 and its respective posterior is uniform. In
Figure 3.7, we can see the uniform spherical distribution around the azimuth coordinate.
In iteration 𝑖, SPM localizes the boundary between two hyper planes by querying points
𝑥 with spherical coordinates fixed to 𝜃 and sweeping over 𝜃𝑖 as shown in Figure 3.8.
After acquiring 𝑛 training points using PM, the median of 𝑝(𝜃𝑖 |𝑥𝑛, 𝑦𝑛) is computed. In
order to generate 𝜃𝑖, 𝜋2 is added to the computed median to account for the fact that the
normal vector needs to be estimated. This process repeats for the next angle 𝜃𝑖−1 and
the uniform distribution for the elevation is shown in Figure 3.9 and the convergence
to a localized boundary is shown in Figure 3.10. Note that the number of labeling
operations is 𝑑𝑛 where 𝑑 +1 and 𝑛 are the dimension of the vector space and the number
of labeling operations for each iteration, respectively.

In order to analyze the performance of SPM for UAL, the capacity achieving prior
𝜋(𝜃) needs to be computed. This is quite difficult and a clear analytical solution is hard
to find. Therefore, a uniform prior is used and achieves close to optimal performance
based on the reasoning from Theorem 5. The convergence of SPM is detailed in the
following theorem:

Theorem 6. Suppose 𝑥 ∈ R𝑑+1 with a bounded p.d.f on the test feature ∀𝑥 , 𝑝(𝑥) ≤ 𝛼.
Also, assume the Oracle is some member of a 𝑑 dimensional homogeneous hyper-plane
hypotheses class followed by a BAC.

Then, SPM algorithm produces a selection policy which satisfies:

lim
𝑛→∞

𝑅 = lim
𝑛→∞

𝐼 (𝜃;𝑌 |𝑋, 𝑥𝑛, 𝑦𝑛) = O
(
2−

𝑛
𝑑
𝐶𝑊

)
where 𝑛 is the total number of Oracle queries and 𝐶𝑊 is the Shannon capacity of

the BAC with transition probability𝑊 .

The proof is provided in Appendix A.6.
Note that the update function in step 9 refers to a Bayesian computation of the

posterior of the threshold point, based on all the observed training examples. The
posterior 𝑝(𝜃𝑖 |𝑥𝑖1:𝑛, 𝑦

𝑖
1:𝑛) is updated at each iteration and the threshold point needs to be

localized with very high accuracy. The Naïve approach would be to quantize the interval
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Figure 3.6: Classifier Hyperplane with Normal Vector

Algorithm 1 Active Learning via Successive Posterior Matching

1: Init: 𝜃 = [ 𝜋2 ,
𝜋
2 ,

𝜋
2 , ...,

𝜋
2 ],

2: Init: ∀𝑖 ∈ [1 : 𝑑 − 1], 𝑝(𝜃𝑖) = 𝑈𝑛𝑖 𝑓 [0, 𝜋]
3: for 𝑖 ← 𝑑 − 1 to 1 do
4: for 𝑘 ← 1 to 𝑛 do
5: 𝜃𝑖 = 𝐹

−1
𝜃𝑖 |𝑥𝑖1:𝑘−1,𝑦

𝑖
1:𝑘−1

(
𝑝−0.5
𝑝+𝑞−1

)
6: 𝑥𝑖

𝑘
= [Π𝑑−1

𝑙=1 sin(𝜃𝑙), cos(𝜃𝑑−1)Π𝑑−2
𝑙=1 sin(𝜃𝑙)

, ..., cos(𝜃𝑖)Π𝑖−1
𝑙=1 sin(𝜃𝑙), ..., cos(𝜃1)]

7: 𝑦𝑖
𝑘
= 𝐿𝑎𝑏𝑒𝑙 (𝑥𝑖

𝑘
)

8: Update 𝑝(𝜃𝑖 |𝑥𝑖1:𝑘 , 𝑦
𝑖
1:𝑘 )

9: end for
10: 𝜃𝑖 = 𝜃𝑖 + 𝜋

2
11: end for
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Figure 3.7: First Iteration of SPM

[0, 𝜋] and compute the posterior for each quantiztion level. However, this approach is
computationally expensive and also limited in accuracy. Since the hypothesis class is a
linear separator followed by a noisy binary channel, then the posterior of the intersection
angle is a multiplication of different step functions. This enables SPM to only maintain
a list of the step points and update the value of the posterior between these points. Since
the number of points is exactly the number of training examples, then the complexity of
the calculation is proportional to 𝑛, and so the whole computational complexity of the
algorithm is linear with 𝑛 with no approximations taken.

3.3.1 Simulation Results
In this section, SPM is compared to a widely used passive learning algorithm for
learning hyper planes - Support Vector Machine (SVM) which is known to perform very
well even in noisy conditions. The comparison will be for feature spaces with 𝑑 = 200
and 𝑑 = 500 and using a BAC with 𝑞 = 10−3 and 𝑝 = 10−4. A Monte Carlo simulation
was implemented to estimate the error probability for an active learner based on SPM
and a passive learner based on SVM. In Figure 3.12, the error probabilities as a function
of the total number of labels performed are presented for different space dimensions.
Each test for 𝑑 = 200 or 𝑑 = 500 has the SVM and SPM error probabilities and also the
trend line as predicted by Theorem 6 for SPM. It can be seen that the error probability
decay is exponential with the decay factor related to the channel capacity divided by
the degrees of freedom, which is in agreement with the theory.
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Figure 3.8: After First Iteration of SPM

In Figure 3.13, the error probabilities for 𝑑 = 200 with different noise levels:
𝑝 = 10−2 and 𝑝 = 10−3 are plotted and it can be seen that the theory holds in these
cases too.
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Figure 3.9: Second Iteration of SPM
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Figure 3.10: After Second Iteration of SPM
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Figure 3.11: Convergence of Angular Coordinates
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Figure 3.12: Error probability for linear separator in R200 and R500 under BAC label
noise
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Part II

Active Learning in the Individual
Setting
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Chapter 4

Individual Active Learning via
Predictive Maximum Likelihood
Minimization

In Chapters 2 and 3, the stochastic setting was considered and an active learning
criterion was proposed and analyzed. This setting has a fundamental disadvantage: it
assumes that the data is generated according to a distribution which belongs to a given
hypothesis class. This assumption cannot be verified on real world data thus limiting
the application of UAL. In Chapter 4, active learning in the individual setting will be
presented and is based on the work in [28, 30]. In this setting the data is not generated
by a distribution from some parametric hypothesis class or even any distribution but an
individual realization.

As an alternative to making distributional assumptions, we build upon the individual
setting [25]. This setting does not assume any probabilistic connection between the
training and test data. Moreover, the relationship between labels and data can even be
determined by an adversary. The generalization error in this setting is known as the
regret [31], which is defined as the log-loss difference between a learner and a genie: a
learner that knows the specific test label but is constrained to use an explanation from a
set of hypotheses.

The predictive Normalized Maximum Likelihood (pNML) learner [31] was pro-
posed as the min-max solution of the regret, where the minimum is over the learner
choice and the maximum is for any possible test label value. The pNML was previously
developed for linear regression [55] and was evaluated empirically for DNN [56]. In
section 4.1, the individual learning setting is introduced and the Predictive Normalized
Maximum Likelihood (pNML) is reviewed. In section 4.2, Individual Active Learning
(IAL) is proposed which is motivated by the minimax regret problem discussed in the
previous section. In section 4.3, the binary classification case is analyzed. It is shown
that for linearly separable data, IAL coincides with binary search. In section 4.4, IAL is
analyzed for the linear regression hypothesis class and the relation to optimal design of
experiments is described. Finally, in section 4.5, it is shown via simulations that IAL
for Gaussian Process Classification (GPC) achieves superior performance in terms of
error probability compared to passive learning, BALD, MU and UAL.

Throughout this chapter, the following notation for a sequence of samples will be
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used 𝑥𝑛 = (𝑥1, 𝑥2, ..., 𝑥𝑛). The variables 𝑥 ∈ X and 𝑦 ∈ Y will represent the features
and labels respectively with X and Y being the sets containing the features and label’s
alphabet respectively.

4.1 Individual Data Setting
In supervised learning, a training set consisting of 𝑛 pairs of examples is provided to
the learner

𝑧𝑛 = {(𝑥𝑖, 𝑦𝑖)}𝑛𝑖=1 (4.1)

where 𝑥𝑖 is the 𝑖-th data point and 𝑦𝑖 is its corresponding label. The goal of a learner
is to predict an unknown test label 𝑦 given its test data, 𝑥, by assigning a probability
distribution 𝑞 (·|𝑥, 𝑧𝑛) for each training set 𝑧𝑛.

In the commonly used stochastic setting, the data follows a distribution assumed
to be part of some parametric family of hypotheses. A more general framework
named the individual setting [25], does not assume that there exist some probabilistic
relation between a feature 𝑥 and a label 𝑦, and so the sequence 𝑧𝑛 = {𝑥𝑛, 𝑦𝑛} is an
individual sequence where the relation can even be set by an adversary. Since there
is no distribution over the data, finding the optimal learner, 𝑞 (·|𝑥, 𝑧𝑛), is an ill-posed
problem. In order to mitigate this problem, an alternative objective is proposed: find a
learner 𝑞 (·|𝑥, 𝑧𝑛) which performs as well as a reference learner on the test set.

Denote Θ as a general index set. Let 𝑃Θ be a set of conditional probability distribu-
tions

𝑃Θ = {𝑝 (𝑦 |𝑥, 𝜃) |𝜃 ∈ Θ} (4.2)

It is assumed that the reference learner knows the test label value 𝑦 but is restricted
to use a model from the given hypothesis set 𝑃Θ. This reference learner then chooses
a model, 𝜃 (𝑥, 𝑦, 𝑧𝑛), that attains the minimum loss over the training set and the test
sample:

𝜃 = arg max
𝜃∈Θ

[
𝑝 (𝑦 |𝑥, 𝜃) 𝑤 (𝜃) Π𝑛

𝑖=1𝑝 (𝑦𝑖 |𝑥𝑖, 𝜃)
]

(4.3)

where performance is evaluated using the log-loss function, i.e. − log (𝑞 (·|𝑥, 𝑧𝑛)). Note
that in this work we extended the individual setting of [57] and allowed the usage
of some prior 𝑤(𝜃) over the parameter space which may be useful for regularization
purposes.

The learning problem is defined as the log-loss difference between a learner 𝑞 and
the reference learner (genie)

𝑅𝑛 (𝑞, 𝑦; 𝑥) = log
𝑝

(
𝑦 |𝑥, 𝜃

)
𝑞 (𝑦 |𝑥, 𝑧𝑛) . (4.4)

Note that the reference learner has access to the true test label, 𝑦 in analogy to the
stochastic setting where the best learner knows the true parameter, 𝜃 in the hypothesis
class. These assumptions allow the reference learner to be the best possible learner and
therefore we wish to minimize the regret to it.

An important result for this setting is provided in [31] and provides a closed form
expression for the minimax regret along with the optimal learner, 𝑞pNML:
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Theorem 7 (Fogel and Feder (2018)). The universal learner, denoted as the pNML,
minimizes the worst case regret:

𝑅𝑛 (𝑥) = min
𝑞

max
𝑦∈Y

log

(
𝑝

(
𝑦 |𝑥, 𝜃

)
𝑞 (𝑦 |𝑥, 𝑧𝑛)

)
The pNML probability assignment and regret are:

𝑞pNML(𝑦 |𝑥, 𝑧𝑛) =
𝑝

(
𝑦 |𝑥, 𝜃

)∑
𝑦 𝑝

(
𝑦 |𝑥, 𝜃

)
𝑅𝑛 (𝑥) = log

∑︁
𝑦∈Y

𝑝
(
𝑦 |𝑥, 𝜃

)
Since the main contribution of this chapter relies on this theorem, we provide a short

proof here:

Proof. We note that the regret, 𝑅𝑛 (𝑥), is equal for all choices of y. Now, if we consider
a different probability assignment, then it would assign a smaller probability for at least
one of the possible outcomes. In this case, choosing one of those outcomes will lead to a
higher regret and then the maximal regret will be higher, leading to a contradiction. □

The pNML regret is associated with the stochastic complexity of an hypothesis class
as discussed by [58] and [56]. It is clear that for pNML, a model that fits almost every
data pattern, would be much more complex than a model that provides a relatively good
fit to a small set of data. Thus, high pNML regret indicates that the model class may be
too expressive and overfit. The pNML learner is the min-max solution for supervised
batch learning in the individual setting [31]. For sequential prediction it is termed the
conditional normalized maximum likelihood [59, 60]. Also, note that any estimation
algorithm can be used to estimate 𝜃 and the same Theorem will hold for the respective
𝜃.

Several methods deal with obtaining the pNML learner for different hypothesis sets.
[55] and [61] showed the pNML solution for linear regression. [62] proposed an NML
based decision strategy for supervised classification problems and showed it attains
heuristic PAC learning. [63] used the pNML for model optimization based on learning
a density function by discretizing the space and fitting a distinct model for each value.

4.2 Active learning for individual data
In active learning, the learner sequentially selects data instances 𝑥𝑖 based on some
criterion and produces 𝑛 training examples 𝑧𝑛. The objective is to select a subset
of the unlabelled pool and derive a probabilistic learner 𝑞 (𝑦 |𝑥, 𝑧𝑛) that attains the
minimal prediction error (on the test set) among all training sets of the same size. Most
selection criteria are based on uncertainty quantification of data instances to quantify
their informativeness. However, in the individual setting, there is no natural uncertainty
measure since there is no distribution governing the data.

We propose to use the min-max regret 𝑅𝑛 as defined in Theorem 7 as an active
learning criterion which essentially quantifies the prediction performance of the training
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set 𝑧𝑛 for a given unlabeled test feature 𝑥. A "good" 𝑧𝑛 minimizes the min-max regret
for any test feature and thus provides good test set performance. Since 𝑅𝑛 is a point
wise quantity, we suggest to look at the average over all test data.

We propose the following criterion:

𝐶𝑛 = min
𝑥𝑛

max
𝑦𝑛

∑︁
𝑥

(∑︁
𝑦

𝑝
(
𝑦 |𝑥, 𝜃

))
(4.5)

where 𝜃 = 𝜃 (𝑥, 𝑦, 𝑧𝑛). The idea is to find a set of training points, 𝑥𝑛 that minimizes the
averaged log normalization factor (across unlabeled test points), for the worst possible
labels 𝑦𝑛. This criterion looks for the worst case scenario since there is no assumption
on the data distribution and we assume individual sequences.

Since (4.5) is difficult to solve for a general hypothesis class, we define a greedy
form which we denote as Individual Active Learning (IAL):

𝐶𝑛|𝑛−1 = min
𝑥𝑛

max
𝑦𝑛

∑︁
𝑥

(∑︁
𝑦

𝑝
(
𝑦 |𝑥, 𝜃

))
(4.6)

Note that when computing (4.6), the previously labeled training set, 𝑧𝑛−1, is assumed
available for the learner and 𝜃 = 𝜃

(
𝑥, 𝑦, 𝑥𝑛, 𝑦𝑛, 𝑧

𝑛−1) . The objective in (4.6) is to find a
single point 𝑥𝑛 from the unlabelled pool as opposed to the objective in (4.5) that tries to
find an optimal batch 𝑥𝑛.

Note that we could have also defined IAL as the average over the regret values
directly and not the normalization factors:

𝑅𝑛|𝑛−1 = min
𝑥𝑛

max
𝑦𝑛

∑︁
𝑥

log

(∑︁
𝑦

𝑝
(
𝑦 |𝑥, 𝜃

))
(4.7)

Due to Jensen, 𝑅𝑛|𝑛−1 ≤ 𝐶𝑛|𝑛−1 and so the optimal point 𝑥𝑛 based on average
normalizing factors will also provide a low average regret. For Chapter 4, IAL as
defined in (4.6) will be used and in Chapter 5, IAL in (4.7) will be used.

In the next sections, we will analyze the performance of IAL on linear regression
and binary classification. First, we will prove that IAL coincides with commonly used
criteria for linear binary separators and linear experimental design. These results suggest
IAL can be viewed as a unified active learning approach for general hypothesis classes.
Finally, we will derive IAL for Gaussian Process Classification (GPC) and analyze the
performance on real data.

4.3 Binary Classification with Separable Data
This section presents an analysis of the performance of IAL applied to one dimensional
linear binary classifiers. When dealing with a 1-dimensional barrier, the margin based
active learning, also known as binary search, achieves optimal sample complexity [7, 20,
64, 65]. We verify the optimality of our criterion by showing that, for a 1-dimensional
barrier, it indeed produces the same result as binary search. To support this claim, we
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present a theorem proving the equivalence between IAL and binary search in the simple
case of a 1-dimensional barrier. This result confirms that IAL is a viable active learning
criterion.

The 1-dimensional barrier hypotheses class is defined as:

𝑝(𝑦 = 1|𝑥, 𝜃) =
{
𝛼 if 𝑥 > 𝜃
1 − 𝛼 otherwise

(4.8)

where 𝛼 ∈ {0, 1}, the input is 𝑥 ∈ [0, 1], output is 𝑦 ∈ {0, 1} and the unknown threshold
is 𝜃 ∈ [0, 1].
Theorem 8. For 1 dimensional linearly separable data, IAL induces a selection policy
which coincides with binary search.

The full proof is in appendix B.1 but we provide a sketch here:

Proof sketch. The greedy criterion defined in (4.6) can be written as

𝐶𝑛|𝑛−1 = min
𝑥𝑛∈X

max
𝑦𝑛∈Y

∫
𝑥∈X

log
∑︁
𝑦∈Y

𝑝
(
𝑦 |𝑥, 𝜃𝑛

)
𝑑𝑥 (4.9)

where 𝑦, 𝑥 and 𝜃𝑛 are the test label, feature and maximum likelihood estimation based
on training and test data respectively

𝜃𝑛 = arg max
𝜃∈Θ

𝑝 (𝑦𝑛, 𝑦 |𝑥𝑛, 𝑥, 𝜃) . (4.10)

We can write the likelihood for 𝑧𝑛−1 as

𝑝

(
𝑦𝑛−1 |𝑥𝑛−1, 𝜃

)
∼ 1

(
𝜃 ≥ 𝜃𝑛−1

𝑚𝑖𝑛

)
1

(
𝜃 < 𝜃𝑛−1

𝑚𝑎𝑥

)
(4.11)

where 𝜃𝑛−1
𝑚𝑖𝑛

and 𝜃𝑛−1
𝑚𝑎𝑥 represent the support of the posterior on 𝜃 given 𝑥𝑛−1, 𝑦𝑛−1.

For each unlabelled pool point 𝑥𝑛, the updated likelihood window function gets split
based on 𝑦𝑛.

For 𝑦𝑛 = 1 − 𝛼: ∫ 1

0
log

1∑︁
𝑦=0

𝑝
(
𝑦 |𝑥, 𝜃𝑛

)
𝑑𝑥 = |𝑥𝑛 − 𝜃𝑛−1

𝑚𝑎𝑥 | (4.12)

and for 𝑦𝑛 = 𝛼: ∫ 1

0
log

1∑︁
𝑦=0

𝑝
(
𝑦 |𝑥, 𝜃𝑛

)
𝑑𝑥 = |𝜃𝑛−1

𝑚𝑖𝑛 − 𝑥𝑛 |. (4.13)

Therefore,

𝐶𝑛|𝑛−1 = min
𝑥𝑛∈X

max{|𝑥𝑛 − 𝜃𝑛−1
𝑚𝑎𝑥 |, |𝜃𝑛−1

𝑚𝑖𝑛 − 𝑥𝑛 |}. (4.14)

The point 𝑥𝑛 which minimizes the maximal length is the mid point of the interval[
𝜃𝑛−1
𝑚𝑖𝑛
, 𝜃𝑛−1
𝑚𝑎𝑥

]
. □

Notice that the fact that IAL and binary search are identical for this hypothesis class
does not mean they are identical for general hypothesis classes. The main advantage
of IAL is that it adapts to different hypothesis classes and is a general active learning
criterion.
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4.4 Linear Regression
In this section, active learning for linear regression in the individual setting is considered.
The goal is to pick a small number of vectors from the space of possible features so that
the resulting learner, 𝑞(𝑦 |𝑥, 𝑧𝑛) performs well in some sense. It will be shown that IAL
for this case coincides with a commonly used criterion, thus further demonstrating IAL
is a unified framework for active learning.

We remind the linear regression model:

𝑦 = 𝑋𝜃 + 𝑧 (4.15)

where 𝑋 ∈ R𝑛𝑥𝑝, 𝜃 ∈ R𝑝, 𝑦 ∈ R𝑛 and 𝑧 ∈ R𝑛 are the design matrix, model vector,
vector of observable responses and i.i.d Gaussian noise vector with zero mean and finite
variance 𝜎2

𝑍
𝐼.

The Maximum Likelihood estimator �̂� =
(
𝑋𝑇𝑋

)−1
𝑋𝑇 𝑦, known as Ordinary Least

Squares (OLS), has the property that the error covariance matrix depends on neither the
true parameter vector 𝜃 nor the observed response 𝑦. This suggests that we can “opti-
mize” the covariance of the estimator a-priori, even before taking any measurements,
transforming the problem from interactive querying an oracle to subset selection of
feature vectors. In experimental design, a small subset 𝑆 ⊂ {1, ..., 𝑛} of column vectors
are selected from 𝑋 thus generating a smaller design matrix 𝑋𝑆. Using 𝑋𝑆, one can
derive the OLS solution for the parameter vector 𝜃. As described before, the design

problem reduces to minimizing the covariance matrix Σ−1 =

(
𝑋𝑇
𝑆
𝑋𝑆

)−1
.

In this section, IAL in batch form (4.5) is applied to the linear regression problem.
The following theorem states that IAL coincides with V optimal design, which mini-
mizes average prediction variance. Other designs are described in [37]. Note that the
values of the pNML normalization factor used for scoring IAL, may be too conservative
when the model class is very expressive. Therefore, using large model classes can result
in over-fitting the query point arbitrarily well to any label. Therefore, we propose to
control the expressivity of the model class by regularization in the form of a prior on
the model parameter, 𝑝 (𝜃). The selected 𝜃 will maximize both data likelihood and a
regularization term, or prior, over parameters. In our case we will opt for a Gaussian
prior with scale factor 𝜆 > 0.

Theorem 9. Consider the hypothesis class:

𝑃Θ = {𝑝 (𝑦 |𝑥, 𝜃) |𝜃 ∈ R𝑑}

𝑝 (𝑦 |𝑥, 𝜃) = 1
√

2𝜋𝜎2
exp

(
− 1

2𝜎2

(
𝑦 − 𝑥𝑇𝜃

)2
)

where 𝑥 ∈ R𝑑 and 𝜎2 is known a-priori.

Then IAL is equivalent to the following subset selection problem:

𝐶𝑛 = min
𝑋𝑛

Tr

(
𝑋𝑇𝑋

(
𝑋𝑇𝑛 𝑋𝑛 +

𝜎2

𝜆
𝐼

)−1)
54



where 𝑋 and 𝑋𝑛 are the concatenation of the test vectors and the concatenation of the
training vectors respectively. Also, the estimation 𝜃 is computed using L2 regularization
with a factor 𝜆. This factor can also be viewed as a Gaussian prior on the model vector
𝜃.

Note that IAL is a function of the training features 𝑥𝑛 only and have no dependence
on their respective labels 𝑦𝑛. Therefore, there is no real need for online feedback in the
active linear regression problem and the training set problem can be cast as a subset
selection problem performed offline. This problem is NP hard and thus approximate
solutions are needed.

This result further demonstrates that IAL can be viewed as a unified framework for
active learning in a variety of hypothesis classes. Since V design is not sub-modular,
then this theorem acts a counter example to IAL being a sub-modular criterion in
general. Note that also UAL in [27], coincided with V-optimal but and the Gaussian
prior was derived as a maximizing prior for the constraint on the family of possible
priors. In the individual case, it is part of the MAP estimation of the optimal model 𝜃.

4.5 Gaussian Process Classification
In this section, we will analyze IAL for Gaussian Process Classification (GPC). GPC is
a powerful, non-parametric kernel-based model that poses a challenging problem for
information-theoretic active learning since the parameter space is infinite dimensional
and the posterior distribution is analytically intractable. A detailed introduction to GPC
can be found in [40].

In [19], BALD was analyzed for GPC and compared to other active learning algo-
rithms including MU. In [27], UAL was analyzed for GPC and was shown to perform
well when given access to the un-labelled test set. In this section, we use the mathemati-
cal model of [19] which is repeated here for clarity.

The probabilistic model underlying GPC is as follows:

𝑓 ∼ 𝐺𝑃(𝜇(·), 𝑘 (·, ·))
𝑦 |𝑥, 𝑓 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 (Φ ( 𝑓𝑥))

(4.16)

where the parameter 𝑓 is a function of a feature point 𝑥 and is assigned a Gaussian
process prior with mean 𝜇(·) and covariance function 𝑘 (·, ·). The label 𝑦 is Bernoulli
distributed with probability Φ( 𝑓𝑥), where Φ is the Gaussian CDF and 𝑓𝑥 is a function
of 𝑓 and 𝑥, for example an inner product.

The conditional distribution for the labels is similar to logistic regression due to
the fact that a function of the weights and data point is passed through an activation
function. However, the main advantage of GPC is in the statistical structure of the latent
vector 𝑓 , which is induced by the Gaussian prior. Unlike logistic regression where the
weights may change per data point, GPC introduces a correlation between the weights
based on the correlation between the data points.

Without any prior, pNML will give over confident scores for models with very high
degrees of freedom. In [56], logistic regression was investigated and a regularization
prior was introduced. In GPC, a regularization prior is part of the model as the Gaussian
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process on 𝑓 ! Therefore, this prior will limit the possible solutions of the hypothesis
class and avoid over-fitting.

For GPC, (4.6) can be written as:

𝐶𝑛|𝑛−1 = min
𝑥𝑛∈X

max
𝑦𝑛∈Y

∑︁
𝑣∈V

∫
𝑢∈U

𝑝

(
𝑣 | 𝑓𝑢

)
𝑑𝑢 (4.17)

The maximum likelihood estimate, 𝑓𝑢 (for test point 𝑢) is based on training and test
data. Again, note that the conditional probability of 𝑣 depends on the random variable
𝑓𝑢 which is a function of 𝑓 and 𝑢.

The MAP estimation for the model parameter vector, 𝑓 (for all possible feature
points):

�̂� = arg max
𝑓
𝑝

(
𝑦𝑛, 𝑣 |𝑥𝑛, 𝑢, 𝑓

)
𝑝( 𝑓 ) (4.18)

where 𝑝( 𝑓 ) is the Gaussian process introduced in (4.16), which acts as a regularization
prior over the latent vector 𝑓 .

Exact inference in GPC is intractable, since given a training set, the likelihood
𝑝

(
𝑦𝑛, 𝑣 |𝑥𝑛, 𝑢, 𝑓

)
, becomes non-Gaussian and complicated. In order to compute IAL in

this case, we approximate the posterior as a Gaussian on the latent model 𝑓 as described
in chapter 3 in [46]. The basic idea in this approximation is to model the posterior:

𝑝( 𝑓 |𝑥𝑛−1, 𝑦𝑛−1) ≈ N
(
𝑓 ;𝑚, 𝐾

)
(4.19)

where 𝑚 and 𝐾 are the mean and covariance given
(
𝑥𝑛−1, 𝑦𝑛−1) .

Once a new data point is added with its corresponding label (𝑥𝑛, 𝑦𝑛), use Bayesian
updating to incorporate the new data point and apply a variational approximation to
model the posterior as a Gaussian distribution:

𝑝

(
𝑓 |𝑥𝑛, 𝑦𝑛

)
≈ N

(
𝑓 ; 𝜇,𝑉

)
(4.20)

where 𝜇 and 𝑉 are the mean and covariance of the variational approximation of the
posterior given (𝑥𝑛, 𝑦𝑛).

For the binary case we can write:

𝐶𝑛|𝑛−1 = min
𝑥𝑛∈X

max
𝑦𝑛∈Y

∫
𝑢∈U

(
Φ

(
𝑓 𝑣=1
𝑢

)
+

(
Φ

(
− 𝑓 𝑣=−1

𝑢

)))
𝑑𝑢 (4.21)

where 𝑓 𝑣=1
𝑢 and 𝑓 𝑣=−1

𝑢 are the maximum likelihood estimates of the latent parameter
𝑓𝑢 for test point 𝑢 with corresponding label 𝑣.

We observe that in order to find the next data point 𝑥𝑛, we do not have to approximate
the Gaussian posterior over all 𝑓 but only on points related to the features. Ideally, we
would use all the data [𝑢, 𝑣, 𝑥𝑛, 𝑦𝑛] to approximate a Gaussian posterior and select the
maximum point. However, since we are looking at all possible labels for all possible
training and test points, we need to use another approximation. We propose to use (4.19)
as a prior for the EP approximation and update the Gaussian approximation using the
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test and candidate training points only and not 𝑧𝑛−1. The mean of the resulting Gaussian
will be used for the IAL computation.

𝑝

(
𝑓𝑥𝑛 , 𝑓𝑢 |𝐷𝑛−1, 𝑥𝑛, 𝑣, 𝑢𝑘 , 𝑙

)
≈ N

(
𝑓𝑢, 𝑓𝑥𝑛 | �̂�, �̂�

)
where �̂� and �̂� are the mean and covariance of the variational approximation of the

posterior given (𝑥𝑛, 𝑢, 𝑦𝑛, 𝑣) and (4.19) as a prior.
The resulting IAL is summarized in Algorithm 3. First, the algorithm uses an

approximate inference method to compute a Gaussian approximation for the posterior
using the available training set. Next, for each training point, all possible labels are
examined along with a sweep on the test set with all possible labels. We run MAP
estimation for all the different configurations of training and test and recover the MAP
estimate for the test points. We accumulate the probability of the test label given
these estimations (pNML regrets). Finally, we find the training point, for which the
worst case regret is minimal over the sum of the test points. For all subsequent tests,
Expectation Propagation (EP) [48] was used for approximating this posterior using the
GPML toolbox [66].

Algorithm 2 Individual Active Learning

1: Input: Training Data {𝑥𝑛−1, 𝑦𝑛−1}
2: Training and Test samples {𝑥𝑖}𝑁𝑖=1 and {𝑢𝑖}𝐾𝑖=1.
3: Output: Next data point for labelling - 𝑥𝑛 IAL - GPC
4: Set 𝐷 = [𝑥𝑛−1, 𝑦𝑛−1]
5: Set EP prior 𝑞𝐸𝑃

𝑝𝑟𝑖𝑜𝑟
= N

(
𝑓 |0, log𝜆𝐼

)
6: Run EP: 𝑞𝑛−1

(
𝑓

)
= 𝐸𝑃(𝐷, 𝑞𝐸𝑃

𝑝𝑟𝑖𝑜𝑟
)

7: S = 𝑧𝑒𝑟𝑜𝑠(𝑁, |Y|)
8: for 𝑖 ← 1 to 𝑁 do
9: for 𝑗 ∈ Y do

10: for 𝑘 ← 1 to 𝐾 do
11: for 𝑙 ∈ Y do
12: Set 𝐷 = [𝑥𝑖, 𝑗 , 𝑢𝑘 , 𝑙]
13: Set EP prior 𝑞𝐸𝑃

𝑝𝑟𝑖𝑜𝑟
= 𝑞𝑛−1

(
𝑓

)
14: N

(
𝑓𝑢𝑘 , 𝑓𝑥𝑖 | �̂�, �̂�

)
= 𝐸𝑃(𝐷, 𝑞𝐸𝑃

𝑝𝑟𝑖𝑜𝑟
)

15: 𝑓 𝑙𝑢𝑘 , 𝑓
𝑗
𝑥𝑖 = �̂�

16: S (𝑖, 𝑗) = S (𝑖, 𝑗) +Φ
(
𝑙 · 𝑓 𝑙𝑢𝑘

)
17: end for
18: end for
19: end for
20: end for
21: 𝑖 = argmin𝑖 max 𝑗 S
22: 𝑥𝑛 = 𝑥𝑖
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Table 4.1: Algorithms Parameters

Parameter Value
Passive Regularization 𝜆 5
MU Regularization 𝜆 5
BALD Regularization 𝜆 5
UAL Regularization 𝜆 5
IAL Regularization 𝜆 5
Initial training set 2 examples (1 for each class)
Unlabelled test set 5 random test features

4.5.1 Simulation Results

In this section, we conduct an empirical comparison between Individual Active Learning
(IAL) and alternative active learning methodologies, employing Gaussian Process
Classification (GPC) on both synthetic and real datasets. Throughout this analysis,
we aim to identify the specific conditions under which IAL demonstrates superior
performance compared to all other active learning schemes, including Universal Active
Learning (UAL), which also considers test distribution, as well as instances where
IAL’s performance aligns with other active learning schemes. The findings reveal that
IAL excels, particularly in scenarios involving Out-of-Distribution cases and when
confronted with extremely limited initial training datasets.

In Table 4.1, the parameters for the different algorithms in the subsequent exper-
iments are detailed. The regularization factor 𝜆 of the Gaussian kernel as defined in
Algorithm 3, is detailed for each selection scheme. Also, the initial training set size and
the number of unlabelled test features used for IAL and UAL are detailed.

The synthetic data set consists of a two dimensional feature space with binary labels.
The training pool is a square in the two dimensional plane with corners at four points
(-1, -1), (1, -1), (-1, 1), and (1, 1) and divides them to two non overlapping regions, as
shown in Figure 4.1, where the two labels are encoded to two colors. The test set is a
smaller sub-set with corners at four points (-1, -0.5), (1, -0.5), (-1, -0.25), and (1, -0.25).
This simulates a scenario where the test set is concentrated in a particular region of the
feature space and there is no real need to learn the whole labeling function which may
be very complex and require many data points for learning. In practice, there may be a
pre-processing stage which prunes the training set from data points which are irrelevant
to the test, but this usually requires domain knowledge which may be unavailable in
real world applications. Also, as mentioned before, this pruning stage will increase the
sample complexity since it requires labelling.

In Figure 4.2, we have conducted a comparison of Passive, MU, BALD, UAL, and
IAL in terms of error rates per training set size. The results indicate that UAL and
IAL exhibit similar and significantly better performance compared to BALD, MU, and
Passive selections. The effectiveness of UAL and IAL stems from their ability to learn
the labeling function within the relevant regions of the feature space, optimizing the use
of the labeling budget by focusing on areas pertinent to the test set.

Furthermore, the similar performance of UAL and IAL in this context can be
attributed to the hypothesis class (GPC) effectively modeling the data distribution.
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Figure 4.1: Synthetic Data Set

The Gaussian kernel approximates the separating curve well, aligning with the true
distribution within the hypothesis class. Therefore, in this valid stochastic setting, there
is no substantial difference between IAL and UAL. Notably, UAL gains an advantage
with larger training sets, as IAL considers the worst-case scenario while UAL leverages
its posterior, becoming more accurate.

It is important to highlight that when the test set matches the training set, both UAL
and IAL do not exhibit a clear advantage over MU and BALD. This scenario, known as
In-Distribution (IND), is characterized by a distinct boundary between classes, and the
data aligns with a specific hypothesis class.

In summary, this synthetic example underscores that when the stochastic setting
is valid, UAL and IAL hold a distinct advantage over active learning schemes that
overlook the (unlabeled) test set.

In the next scenario, IAL is compared to UAL, BALD, MU and Passive learning in
an empirical analysis using Gaussian Process Classification (GPC) over a real data set.
The difference from the synthetic case is that now the test and train distributions do not
necessarily belong to the GPC hypothesis class and the stochastic setting can no longer
be verified, thus we expect to see an advantage for IAL over UAL in this case.

The dataset is the USPS hand-written digits data set [67]. There are a total of 9298
handwritten single digits between 0 and 9, each of which consists of 16 × 16 pixel image.
Half of 9298 digits are designated as the training set and the other half are the test test
(labels are not known by the learner). Pixel values are normalized to be in the range
of [-1, 1]. Each feature has dimension 256 which requires significant computational
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Figure 4.2: Error Probability: Synthetic Data Set

resources for the EP approximation. In order to reduce the dimension of the data space,
PCA (Principal Component Analysis) is applied using the entire un-labelled training
data. After centering and PCA, the eigen-vectors corresponding to the 65% largest
eigen-values of the PCA are used as the feature space for classification. A small random
subset of the unlabeled test set is given to the learner and a small random initial example
per class (bootstrap the GPC learner). Active learning is performed by adding a new
data point each iteration based on the different criteria.

The objective is to classify the digit 7 versus 9. We chose these two digits since
they are graphically similar and thus we expect it will be hard to separate between them,
so the boundary will not be very clear. For example, distinguishing between 0 and 1
proves to be a very easy learning task and with very few examples, the GPC learns the
optimal separator, so there is no benefit for using active learning for this task.

The initial scenario under scrutiny involves both the test and training sets comprising
solely images of the digits 7 and 9, denoted as In-Distribution (IND). From a practical
standpoint, this scenario is deemed less compelling since active learning typically
grapples with datasets containing Out-Of-Distribution (OOD) samples, with the primary
goal being to minimize human intervention. Nonetheless, from a theoretical perspective,
it is intriguing to observe that IAL holds its ground against other methods in this context.

In Figure 4.3, the classification error probability is graphed, revealing a comparable
performance among UAL, MU, and BALD, while IAL exhibits a slight superiority in
the small training set regime. This can be attributed to the invalidation of the stochastic
assumption, where UAL, BALD and MU lack a guarantee of optimal performance and
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Figure 4.3: Error Probability: Hand-written digits data set, IND

the fact that the test and training distributions are the same. The resemblance of this
scenario to the In-Distribution (IND) case in the synthetic example underscores that all
active learning schemes surpass passive learning. However, it’s crucial to note that the
margin between the passive scheme and other schemes is relatively small, rendering
this scenario less practically significant. The computational complexities associated
with active learning do not manifest a substantial improvement over random sampling.
Despite its limited practical interest, we present and analyze this IND scenario to
underscore that, for training and test sets within the same distribution, IAL and UAL
exhibit performance akin to MU and BALD, albeit without introducing notable practical
value.

Subsequently, we investigate the Out-Of-Distribution (OOD) scenario where the
training set encompasses images ranging from 0 to 9, while the test set exclusively
consists of images depicting the digits 7 and 9. This scenario mirrors real-world
conditions where training data invariably includes OOD images, necessitating the active
learning scheme’s ability to effectively handle such instances.

Unlike the two previous examples, in the OOD case, the selection algorithm may
select an OOD example. Once an OOD feature is passed to an Oracle, it will label it
as OOD and this feature will not be included in the training set. However, a labelling
operation has occurred and the objective of active learning is to minimize any such
labelling. Therefore, the x-axis in the following error figures will be denoted as "Oracle
Calls" meaning that we count the number of labelling operations done and not the
training set size. In Figure 4.4, we plot the error rates for all the schemes in the OOD
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Figure 4.4: Error Probability: Hand-written digits data set, OOD

case. We can see that IAL is superior to the other schemes and UAL is second best.
In Figure 4.5, the probability for selecting an IND point is presented for each AL

scheme. We can see that the passive scheme has a fixed 0.2 probability as expected
since 7 and 9 represent 20% of the dataset. IAL has the highest selection probability
which accounts why it performs so well. This advantage over UAL is most probably
due to the fact that the stochastic setting is not valid and the "true" data distribution is
not part of GPC.

Moreover, in Figure 4.6, the training set size is presented as a function of the Oracle
calls. The idea is to show the efficiency of IAL’s selection policy. Again, this shows that
IAL is better at finding informative IND features than the other schemes. First order
analysis can model the training set size as accumulating Bernoulli random variables
with the selection probability as described in Figure 4.5. Therefore, the slope of the
mean training set size will be 𝑛𝑝 (𝑛 is the selection iteration and 𝑝 is the IND selection
probability). For IAL 𝑝 ≈ 0.7 and for passive 𝑝 = 0.2. Clearly, IAL has a larger linear
slope for the mean training set size.

In Figure 4.7, we compare the error rates for IAL in both the In-Distribution (IND)
and Out-Of-Distribution (OOD) scenarios, with normalization based on the effective
training set in the OOD case. The aim is to see if IAL’s performance in the OOD
case is comparable to its performance in the IND case. This involves comparing the
classification error when only IND samples are available versus when IAL selects
IND samples from a pool that includes OOD samples. Notably, the two error rates
closely resemble each other, suggesting that IAL adeptly avoids OOD samples while
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Figure 4.5: IND selection probability: Hand-written digits data set

strategically selecting the most informative samples from the IND distribution, in
contrast to a random selection from the IND samples.

A potential counterargument might suggest coupling BALD or MU with an OOD
detector to achieve similar results to IAL. However, this approach entails training the
OOD detector with numerous IND samples, fine-tuning its threshold and parameters,
and crucially, necessitates an expert to define the similarity metric (as different OOD
detectors may yield varying results). IAL holds the advantage of implicitly detecting
OOD samples while concurrently selecting informative IND samples. We defer to
future research the exploration of coupling BALD and MU with distinct OOD detectors
for comparison with IAL.
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Chapter 5

Deep Individual Active Learning

In this chapter we deal with the individual setting and concentrate on the Deep Neural
Network (DNN) hypothesis class and is based on the work in [29]. Recent leading
strategies are based on the assumption that the training pool has the same distribution
as the test set, which may not be the case in privacy-sensitive applications where user
data cannot be annotated. In this work, we rely on the individual setting, which does
not assume a probabilistic relationship between the training and test data. We propose
a criterion that chooses to label data points that minimize the min-max regret on the
test set. By applying an approximate version of this criterion to neural networks, we
show that in the presence of out-of-distribution data, the proposed criterion reduces the
required training set size by up to 15.4%, 11%, and 35.1% for CIFAR10, EMNIST, and
MNIST datasets respectively.

5.1 Related Work
Recent research has focused on obtaining a diverse set of samples for training deep
learning models with reduced sampling bias. The strategies [11, 19, 23, 27] aim to
quantify the uncertainties of samples from the unlabeled pool and utilize them to select
a sample for annotation. Their underlying assumptions are that the distribution of the
unlabeled pool and the test set are similar and that the data follows some parametric
distribution. However, this may not always be true, particularly in privacy-sensitive
applications where real user data cannot be annotated [24] and the unlabeled pool may
contain irrelevant information. In such cases, choosing samples from the unlabeled pool
may not necessarily improve model performance on the test set.

A widely used criterion for active learning is Bayesian Active Learning by Dis-
agreement (BALD) which was originally proposed by [19]. This method finds the
unlabeled sample 𝑥𝑖 that maximizes the mutual information between the model parame-
ters 𝜃 and the candidate label random variable 𝑌𝑖 given the candidate 𝑥𝑖 and training set
𝑧𝑛−1 = {(𝑥𝑖, 𝑦𝑖)}𝑛−1

𝑖=1 :
𝑥𝑖 = argmax

𝑥𝑖

𝐼 (𝜃;𝑌𝑖 |𝑥𝑖, 𝑧𝑛−1)

where 𝐼 (𝑋;𝑌 |𝑧) denotes the mutual information between the random variables X and Y
conditioned on a realization z. The idea in BALD’s core is to minimize the uncertainty
about model parameters using Shannon’s entropy. This criterion also appears as an
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upper bound on information based complexity of stochastic optimization [20] and also
for experimental design [21, 22]. There is an issue of postulating a reasonable prior for
this Bayesian approach. Empirically, this approach was investigated by [23], where a
heuristic Bayesian method for deep learning was proposed leading to several heuristic
active learning acquisition functions that were explored within this framework.

However, BALD has a fundamental disadvantage if the test distribution differs from
the training set distribution since what is maximally informative for model estimation
may not be maximally informative for test time prediction. In a previous work, [27], we
derived a criterion named Universal Active Learning (UAL) that takes into account the
unlabeled test set when optimizing the training set:

𝑥𝑖 = argmin
𝑥𝑖

𝐼 (𝜃;𝑌 |𝑋, 𝑥𝑖, 𝑌𝑖, 𝑧𝑛−1)

where 𝑋 and 𝑌 are the test feature and label random variables. UAL is derived from a
Capacity-Redundancy theorem [26] and implicitly optimizes an exploration-exploitation
trade-off in feature selection. In addition, in the derivation of [26], the prior on 𝜃 is
expressed as the Capacity maximizing distribution for 𝐼 (𝜃;𝑌 |𝑋, 𝑥𝑖, 𝑌𝑖, 𝑧𝑛−1).

It should be noted that recently [68], have proposed a criterion denoted Expected
Predictive Information Gain (EPIG) which also takes into account the unlabelled test
set and focuses on prediction and not model estimation:

𝑥𝑖 = argmax
𝑥𝑖

𝐼 (𝑌 ;𝑌𝑖 |𝑋, 𝑥𝑖, 𝑧𝑛−1)

We show in Appendix B.3 that EPIG is equivalent to UAL, but unlike EPIG which does
not optimize the model prior, UAL provides an expression for the optimal model prior.

UAL and BALD assume that both training and test data follow a conditional distribu-
tion which belongs to a given parametric hypothesis class, {𝑝 (𝑦 |𝑥, 𝜃)}. This assumption
cannot be verified on real world data thus limiting its application. As an alternative
to making distributional assumptions, we build upon the individual setting [25]. This
setting does not assume any probabilistic connection between the training and test
data. Moreover, the relationship between labels and data can even be determined by an
adversary. The generalization error in this setting is known as the regret [31], which is
defined as the log-loss difference between a learner and a genie: a learner that knows
the specific test label but is constrained to use an explanation from a set of hypotheses.

The predictive Normalized Maximum Likelihood (pNML) learner [31] was pro-
posed as the min-max solution of the regret, where the minimum is over the learner
choice and the maximum is for any possible test label value. The pNML was previously
developed for linear regression [55] and was evaluated empirically for DNN [56].

The setting considered in this chapter, i.e. active learning with no distributional
assumption, is related to the active online learning literature [69, 70] which deals
primarily with task-agnostic learning which does not assume a connection between
the training and test tasks. [69] proposed an active learning that works efficiently with
the deep networks. A small parametric module, named “loss prediction module”, is
attached to a target network, and learns it to predict target losses of unlabeled inputs.
Then, this module can suggest data that the target model is likely to produce a wrong
prediction. This method is task-agnostic as networks are learned from a single loss
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regardless of target tasks. [70] suggested a pool-based semi-supervised active learning
algorithm that implicitly learns a sampling mechanism in an adversarial manner. Unlike
conventional active learning algorithms, this approach is task agnostic, i.e., it does
not depend on the performance of the task for which we are trying to acquire labeled
data. This method learns a latent space using a variational autoencoder (VAE) and an
adversarial network trained to discriminate between unlabeled and labeled data. The
minimax game between the VAE and the adversarial network is played such that while
the VAE tries to trick the adversarial network into predicting that all data points are
from the labeled pool, the adversarial network learns how to discriminate between
dissimilarities in the latent space.

In this chapter, we derive an active learning criterion that takes into account a trained
model, the unlabeled pool, and the unlabeled test features. The criterion is designed to
select a sample to be labeled in such a way that, when added to the training set with
its worst-case label, it attains the minimal pNML regret for the test set. Additionally,
we provide an approximate version of this criterion that enables faster and practical
application for deep neural networks (DNNs).

Throughout this chapter, a sequence of samples will be denoted 𝑥𝑛 = (𝑥1, 𝑥2, ..., 𝑥𝑛).
The variables 𝑥 ∈ X and 𝑦 ∈ Y will represent the features and labels respectively with
X and Y being the sets containing the features and label’s alphabet respectively.

5.2 Deep individual active learning
The DNN hypothesis class poses a challenging problem for information-theoretic active
learning since its parameter space is of very high dimension and the weights posterior
distribution is analytically intractable. For the DNN hypothesis set, [71] estimated the
pNML distribution by fine-tuning the last layers of the network for every test input
and label combination. This approach is computationally expensive since training is
needed for every test input. [56] suggested a way to accelerate the pNML computation
in DNN by using approximate Bayesian inference techniques to produce a tractable
approximation to the pNML. Moreover, direct application of deep active learning
schemes is unfeasible for real world large scale data since it requires training the entire
model for each possible training point. To make matters worse, for IAL, the network
also needs to be trained for every test point and every possible corresponding label.

In this section, we derive an approximation of IAL for DNNs which is based on
variational inference algorithms [23, 36, 64]. We define the hypothesis class in this case
as follows:

𝑝 (𝑦 |𝑥, 𝜃) = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 ( 𝑓𝜃 (𝑥)) (5.1)

where 𝜃 are all the weights and biases of the network and 𝑓𝜃 (𝑥) is the model output
before the last softmax layer. Note that 𝑥, 𝑦 and 𝑝(𝜃) are test feature, test label and
prior on the weights respectively.

The MAP estimation for 𝜃 is

𝜃 = arg max
𝜃
𝑝 (𝑦𝑛, 𝑦 |𝑥𝑛, 𝑥, 𝜃) 𝑝(𝜃), (5.2)

where the prior 𝑝(𝜃) acts as a regularizer over the latent vector 𝜃. It is common practice
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to use some regularization mechanism to control the training error for DNN’s. In order
to embed the regularization mechanism into the MAP we introduced this prior 𝑝(𝜃).

Given a training set, the maximization of the likelihood function 𝑝 (𝑦𝑛, 𝑦 |𝑥𝑛, 𝑥, 𝜃) 𝑝(𝜃)
is performed by training the DNN with all the data and converging to a steady state
maxima. Note that 𝑥𝑛−1, 𝑦𝑛−1 are assumed known while 𝑥𝑛, 𝑦𝑛, 𝑥 and 𝑦 are not known
and all the different possibilities need to be considered resulting with multiple 𝜃’s.

In order to avoid re-training the entire network for all possible values of 𝑥, 𝑦, 𝑥𝑛 and
𝑦𝑛, we utilize the independence between soft-max scores in the MAP estimation. Using
Bayes, we observe that (5.2) can be re-written as:

𝜃 = arg max
𝜃
𝑝 (𝑦 |𝑥, 𝜃) 𝑝 (𝑦𝑛 |𝑥𝑛, 𝜃) 𝑝

(
𝜃 |𝑦𝑛−1, 𝑥𝑛−1

)
(5.3)

where 𝑝
(
𝜃 |𝑦𝑛−1, 𝑥𝑛−1) is the posterior of 𝜃 given the available data 𝑧𝑛−1 = (𝑥𝑛−1, 𝑦𝑛−1).

The posterior 𝑝
(
𝜃 |𝑦𝑛−1, 𝑥𝑛−1) is not dependent on the test data (𝑥, 𝑦) and the eval-

uated labeling candidate (𝑥𝑛, 𝑦𝑛), thus can be computed once per selection iteration
and then used in the IAL selection process. This is a very important point which needs
to be highlighted: There is no need to re-train the network for every (𝑥, 𝑦) and
(𝑥𝑛, 𝑦𝑛). We only need to train the network using 𝑥𝑛−1, 𝑦𝑛−1 and then during the
IAL selection process run forward passes on different 𝜃 to compute 𝑝 (𝑦 |𝑥, 𝜃) and
𝑝 (𝑦𝑛 |𝑥𝑛, 𝜃). This fact is a significant computational complexity reduction since the
number of possible points 𝑥𝑛 can be huge. This trick is what makes this algorithm
practical.

However, we cannot be satisfied with just a single DNN training pass since we
want to acquire a distribution over the weights 𝜃. This requires some advanced tech-
niques [32, 72, 73] which involve multiple training passes over the network but signif-
icantly less than the feature space. To make matters worse, for a DNN, the posterior,
𝑝

(
𝜃 |𝑦𝑛−1, 𝑥𝑛−1) is multi modal and intractable to compute directly. Therefore, we pro-

pose to approximate it by some simpler distribution which will allow easier computation
of the maximum likelihood 𝜃. We recall that Algorithm 3 also estimates this posterior
using EP and we tried to use this method to approximate the posterior. This approach
didn’t produce good results and we hypothesize that since EP is based on a single mode
Gaussian approximation and the posterior is multi-modal, the approximation is not good
enough. Also, computing EP with every training and test points on a DNN is computa-
tionally prohibitive and thus we conclude that a different approach for approximating
the posterior is needed.

5.2.1 Variational Inference
Variational inference is a technique used in probabilistic modeling to approximate
complex probability distributions that are difficult or impossible to calculate exactly
[73, 74, 75]. Variational inference has been used in a wide range of applications, includ-
ing in Bayesian neural networks, latent Dirichlet allocation, and Gaussian processes.
The goal of variational inference is to find an approximation, 𝑞∗(𝜃) from a parametric
family Q, to the true distribution, 𝑝(𝜃 |𝑧𝑛−1), that is as close as possible to the true distri-
bution, but is also computationally tractable. This goal is formulated as minimizing the
Kullback-leibler (KL) divergence between the two distributions (also called Information
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projection):

𝑞∗(𝜃) = argmin
𝑞∈Q

𝐷𝐾𝐿

(
𝑞(𝜃) | |𝑝(𝜃 |𝑧𝑛−1)

)
There are different algorithms for implementing variational inference, most involve

optimizing a lower bound on the log-likelihood of the data under the true distribution
(called evidence). The lower bound is defined as the difference between the true
distribution’s data log-likelihood and the Kullback-Leibler (KL) divergence between
the true distribution and the approximation. The KL divergence measures the distance
between the two distributions, and so, optimizing the lower bound is equivalent to
minimizing the distance between the true distribution and the approximation.

One common algorithm for implementing variational inference is called mean field
variational inference [76]. In this approach, the approximation to the true distribution
is factorized into simpler distributions that are easier to work with, such as Gaussians
or Bernoullis. The parameters of these simpler distributions are then optimized to
minimize the KL divergence between the true distribution and the approximation.

Another algorithm for variational inference is called stochastic variational inference
[77]. In this approach, the optimization is performed using stochastic gradient descent,
with a random subset of the data used in each iteration. This allows the algorithm to
scale to large datasets and complex models.

In this work, we opted to use the method in [32], denoted as MC-Dropout (Monte
Carlo Dropout), due to its computational simplicity and favorable performance. MC
dropout is a technique used in deep learning to estimate the uncertainty of a neural
network’s predictions. It involves randomly dropping out (setting to zero) some of the
neurons in a neural network during training, and then running multiple forward passes
on the same input with different dropout masks, which generates different outputs. At
inference time, MC dropout is used to obtain a probabilistic estimate of the network’s
prediction by performing multiple forward passes with different dropout masks, and
taking the average or majority vote of the outputs. The variance of the outputs across
the different passes gives an estimate of the uncertainty of the prediction. This can
be particularly useful in applications such as medical diagnosis or self-driving cars,
where knowing the uncertainty associated with a prediction can be important for making
informed decisions.

In [32], the authors argued that performing MC-Dropout on DNNs with dropout
applied before every weight layer is mathematically equivalent to minimizing the
KL divergence between the weight posterior of the full network and a parametric
distribution which is controlled by a set of Bernoulli random variables defined by the
dropout probability. Therefore, 𝑝

(
𝜃 |𝑦𝑛−1, 𝑥𝑛−1) can be approximated in KL-sense by a

distribution which is controlled by a dropout parameter. We can use this idea in order to
approximate (5.3) and find an approximated weight distribution, 𝑞 (𝜃). Therefore, we
can re-write (5.3) as:

𝜃 = arg max
𝜃
𝑝 (𝑦 |𝑥, 𝜃) 𝑝 (𝑦𝑛 |𝑥𝑛, 𝜃) 𝑞 (𝜃) (5.4)

However, 𝑞 (𝜃) as described in [32] is still complex to analytically compute. In
fact in [32], the authors do not explicitly compute this distribution but sample it and
compute integral quantities on this distribution (such as expectation and variance) using
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sampling and averaging of multiple independent realizations and the Law of Large
Numbers (LLN). Since we focus on point-wise samples from 𝑞 (𝜃), we cannot use the
same approach as in [32].

In this work, we propose to sample 𝑀 weights, 𝜃𝑚, from 𝑞 (𝜃) and find 𝜃 among
all the different samples. Since the weights are embedded in a high dimensional space,
then the probability of the sampled weights can be assumed to be relatively uniform.
Therefore we propose to approximate (5.4) as:

𝜃 = arg max
{𝜃𝑚}𝑀𝑚=1

𝑝 (𝑦 |𝑥, 𝜃𝑚) 𝑝 (𝑦𝑛 |𝑥𝑛, 𝜃𝑚) (5.5)

As observed by [32], (5.5) can be computed by running multiple dropout inference
passes on the network trained using dropout with 𝑧𝑛−1. The dropout inference passes
will be the same for both 𝑥 and 𝑥𝑛. The resulting algorithm denoted Deep Individual
Active Learning (DIAL) is shown in Algorithm 3 and follows these steps:

1. Train a model on the labeled training set 𝑧𝑛−1 with dropout.

2. Run MC-Dropout inference for 𝑀 iterations on all the unlabeled pool and test
set.

3. Find the weight that maximizes DNN prediction of the test input and the unlabeled
candidate input as in (5.3).

4. Accumulate the pNML regret of the test point given these estimations.

5. Find the unlabeled candidate for which the worst case averaged regret of the test
set is minimal as in (4.6).

For step 2, since the variational posterior associated with MC-Dropout is difficult to
evaluate, we assume that it is uniform for all the sampled weights.

We emphasize the significant complexity reduction provided by our approximation:
a naive implementation of pNML computation would require training the network over
all possible training points 𝑥𝑛 and test points 𝑥 with all possibilities of their respective
labels 𝑦𝑛, 𝑦. This would render our criterion unfeasible for real-world applications. Our
proposed approach, DIAL, only requires performing training with dropout on 𝑧𝑛−1 and
then performing only inference passes (considerably faster than training passes) to get
multiple samples of the weights.

5.3 Experiments
In this section, we analyze the performance of DIAL and compare its performance
to state-of-the-art active learning criteria. We tested the proposed DIAL strategy in
two scenarios:

• The initial training, unlabeled pool, and test data come from the same distribution
(IND scenario).

• There are OOD samples present in the unlabeled pool (OOD scenario).
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Algorithm 3 DIAL: Deep Individual Active Learning

Input Training set 𝑧𝑛−1, unlabeled pool and test samples {𝑥𝑖}𝑁𝑖=1 and {𝑥𝑘 }𝐾𝑘=1.
Output Next data point for labeling 𝑥𝑖
Run MC-Dropout using 𝑧𝑛−1 to get {𝜃𝑚}𝑀𝑚=1
S = 𝑧𝑒𝑟𝑜𝑠(𝑁, |Y|)
for 𝑖 ← 1 to 𝑁 do

for 𝑦𝑖 ∈ Y do
for 𝑘 ← 1 to 𝐾 do

Γ = 0
for 𝑦𝑘 ∈ Y do
𝜃 = argmax𝜃𝑚 𝑝 (𝑦𝑘 |𝑥𝑘 , 𝜃𝑚) 𝑝 (𝑦𝑖 |𝑥𝑖, 𝜃𝑚)
Γ = Γ + 𝑝

(
𝑦𝑘 |𝑥𝑘 , 𝜃

)
end for
S (𝑖, 𝑦𝑖) = S (𝑖, 𝑦𝑖) + log Γ

end for
end for

end for
𝑥𝑖 = argmin𝑥𝑖 max𝑦𝑖 S

The reason for using the individual setting and DIAL as its associated strategy
in the presence of OOD samples is that it does not make any assumptions about the
data generation process, making the results applicable to a wide range of scenarios,
including PAC [78], stochastic [25], adversarial settings, as well as samples from
unknown distributions.

We considered the following datasets for training and evaluation of the different
active learning methods:

• The MNIST dataset [79] consists of 28 × 28 grayscale images of handwritten
digits, with 60K images for training and 10K images for testing.

• The EMNIST dataset [80] is a variant of the MNIST dataset that includes a
larger variety of images (upper and lower case letters, digits, and symbols). It
consists of 240K images with 47 different labels.

• The CIFAR10 dataset [81] consists of 60K 32 × 32 color images in 10 classes.
The classes include objects such as airplanes, cars, birds, and ships.

• Fashion MNIST [82] is a dataset of images of clothing and accessories, consisting
of 70K images. Each image is 28 × 28 grayscale pixels.

• The SVHN dataset [83] contains 600K real-world images with digits and num-
bers in natural scene images collected from Google Street View.

We built upon [84] and [68] open-source implementations of the following methods:
The Random sampling algorithm is the most basic approach in learning. It selects

samples to label randomly, without considering any other criteria. This method can be
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(a) MNIST and OOD images (b) EMNIST and OOD images (c) CIFAR10 and OOD images

(d) MNIST test images (e) EMNIST test images (f) CIFAR10 test images

Figure 5.1: Datasets that contain a mix of images with OOD samples. (Top) Unlabeled
pool contains OOD samples (Bottom) Test set includes only valid data.

useful when the data are relatively homogeneous and easy to classify, but it can be less
efficient when the data are more complex or when there is a high degree of uncertainty.

The Bayesian Active Learning by Disagreement (BALD) method [23] utilizes
an acquisition function that calculates the mutual information between the model’s
predictions and the model’s parameters. This function measures how closely the
predictions for a specific data point are linked to the model’s parameters, indicating that
determining the true label of samples with high mutual information would also provide
insight into the true model parameters.

The Core-set algorithm [11] aims to find a small subset from a large labeled dataset
such that a model learned from this subset will perform well on the entire dataset. The
associated active learning algorithm chooses a subset that minimizes this bound, which
is equivalent to the k-center problem.

The Expected Predictive Information Gain (EPIG) method [68] was motivated
by BALD’s weakness in prediction-oriented settings. This acquisition function directly
targets a reduction in predictive uncertainty on inputs of interest by utilizing the unla-
belled test set. It is shown in Appendix B.3 that this approach is similar to UAL [27],
where the main difference is that UAL assumes the stochastic setting, where the data
follow some parametric distribution.

5.3.1 Experimental Setup
The first setting we consider consists of an initial training set, an unlabeled pool (from
which the training examples are selected), and an unlabeled test set, all drawn from the
same distribution. The experiment includes the following four steps:

1. A model is trained on the small labeled dataset (initial training set).

2. One of the active learning strategies is utilized to select a small number of the
most informative examples from the unlabeled pool. Since it is computationally
expensive to select one sample at a time, the 256 samples with the highest score
are taken per AL scheme.
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3. The labels of the selected samples are queried and added to the labeled dataset.

4. The model is retrained using the new training set.

Steps 2–4 are repeated multiple times, with the model becoming more accurate with
each iteration, as it is trained on a larger labeled dataset.

In addition to the standard setting, we evaluate the performance in the presence
of OOD samples. In this scenario, the initial training and test sets are drawn from
the same distribution, but the unlabeled pool contains a mix of OOD samples. When
an OOD unlabeled sample is selected for annotation, it is not used in training of the
next iteration of the model. Across all x-axis values in the subsequent test accuracy
figures, the presented metric is the count of Oracle calls, reflecting the instances when a
selection strategy chose a sample, whether it be IND or OOD. It is crucial to differentiate
this metric from the training set size, as the selection of an OOD sample leads to an
increase in the number of Oracle calls, while the training set size remains unaffected.
An effective strategy would recognize that OOD samples do not improve performance
on the test set and avoid selecting them.

A visual representation of the scenario with OOD samples is illustrated in Figure
5.2a–c. These figures show the unlabeled pool, which contains a mixture of both IND
and OOD samples. Figure 5.2d–f show the test set, which contains only IND samples.
We argue that this is a representative setting for active learning in real life. In the real
world, unlabelled pools are collected from many data sources and will most certainly
contain OOD data. The process of pruning the unlabelled pool is a costly process and
involves human inspection and labeling, which needs to be minimized. This is exactly
the goal of active learning and finding a criterion which implicitly filters OOD data is
of significant interest.

(a) MNIST and OOD images (b) EMNIST and OOD images (c) CIFAR10 and OOD images

(d) MNIST test images (e) EMNIST test images (f) CIFAR10 test images

Figure 5.2: Datasets that contain a mix of images with OOD samples. (Top) Unlabeled
pool contains OOD samples (Bottom). Test set includes only valid data.

5.3.2 MNIST Experimental Results
Following [23], we considered a model consisting of two blocks of convolution, dropout,
max-pooling, and ReLu, with 32 and 64 5 × 5 convolution filters. These blocks are

74



followed by two fully connected layers that include dropout between them. The layers
have 128 and 10 hidden units, respectively. The dropout probability was set to 0.5 in
all three locations. In each active learning round, a single sample was selected. We
executed all active learning methods six times with different random seeds. For BALD,
EPIG, and DIAL, we used 100 dropout iterations and employed the criterion on 512
random samples from the unlabeled pool. MNIST results are shown in Figure 5.3a. The
largest efficiency is at a number of Oracle calls of 71, where DIAL attains an accuracy
rate of 0.9, while EPIG and BALD achieve an accuracy rate of 0.86.

50 100 150 200 250 300
Number of oracle calls

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Te
st

 a
cc

ur
ac

y 
ra

te

Random
Bald
Core-set
EPIG (UAL)
DIAL

(a) MNIST

50 100 150 200 250 300
Number of oracle calls

0.60

0.70

0.80

0.90

Te
st

 a
cc

ur
ac

y 
ra

te

Random
Bald
Core-set
EPIG (UAL)
DIAL

(b) MNIST with OOD

Figure 5.3: Accuracy as function of number of Oracle calls on MNIST dataset. DIAL
outperforms the baselines for the two setups.

To simulate the presence of OOD samples, we added the Fashion MNIST to the
unlabeled pool such that the ratio of Fashion MNIST to MNIST was 1:1. In this setting,
DIAL outperforms all other baselines, as shown in Figure 5.3b. DIAL is the top-
performing method and has better accuracy than EPIG, BALD, Core-set, and Random.
The largest efficiency is an accuracy rate of 0.95, where DIAL uses 240 Oracle calls,
while BALD needs 307 (−35.1%). EPIG never reaches this accuracy level. The number
of Oracle calls for additional accuracy rates is shown in Table 5.1.

Table 5.1: MNIST with OOD number of Oracle calls at x% accuracy.

Methods 85% Acc. 75% Acc. 65% Acc.

Random 145 73 36
Core-set 117 61 33
BALD 83 51 32
EPIG 84 56 35
DIAL 73 (−12.1%) 48 (−5.9%) 30 (−6.2%)

5.3.3 EMNIST Experimental Results

We followed the same setting as the MNIST experiment with a slightly larger model
than MNIST consisting of three blocks of convolution, dropout, max-pooling, and ReLu.
The experimental results, shown in Figure 5.4a, indicate that DIAL is the top-performing
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method. For an accuracy rate of 0.56, it requires 8.3% less Oracle calls when compared
to the second best method.
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(b) EMNIST with OOD

Figure 5.4: Active learning performance on the EMNIST dataset. DIAL is more efficient
than tested baselines in the number of Oracle calls.

In the presence of OOD samples, the DIAL method outperforms all other baselines,
as shown in Figure 5.4b and Table 5.2. For 300 Oracle calls, DIAL achieves a test
set accuracy rate of 0.52, while BALD, EPIG, Core-set, and Random attain 0.51, 0.5,
0.42, and 0.40, respectively. For an accuracy rate of 0.53, DIAL needs 308 Oracle calls,
while BALD and EPIG require 346 and 342, respectively (−11%). Moreover, Core-set
and Random do not achieve this accuracy.

Table 5.2: EMNIST with OOD number of Oracle calls at x% accuracy.

Methods 40% Acc. 30% Acc. 25% Acc.

Random 281 140 80
Core-set 221 96 62
BALD 154 85 59
EPIG 157 84 59
DIAL 138 (−10.4%) 84 (−1.2%) 59 (0%)

5.3.4 CIFAR10 Experimental Results

For the CIFAR10 dataset, we utilized ResNet-18 [85] with an acquisition size of
16 samples. We used 1K initial training set size and measured the performance of
the active learning strategies up to a training set size of 3K. The CIFAR10 results are
shown in Figure 5.5a. Overall, DIAL and Random perform the same and have a better
test set accuracy than the other baselines for Oracle calls greater than 2100.
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Figure 5.5: The left figure illustrates the performance of CIFAR10 using only IND
samples. The DIAL method performs similarly to the Random method. The figure
on the right shows the performance of a combination of OOD samples, where DIAL
outperforms all other methods.

When the presence of OOD samples in the unlabeled pool is considered, as shown
in Figure 5.5b, DIAL outperforms the other methods. Table 5.3 shows the number
of Oracle calls required for different accuracy levels. For the same accuracy rate of
0.65, DIAL needs up to 15.4% less Oracle calls than the second best method. This
can be explained by Figure 5.6, which shows the ratio of OOD samples to the number
of Oracle calls. The figure suggests that DIAL outperforms other criteria by selecting
fewer OOD samples, contributing to its commendable performance. It is noteworthy
that in all OOD scenarios, DIAL demonstrated superior ability to identify in-distribution
samples without explicit knowledge of the distribution and solely utilizing unlabeled
test features. This underscores the universality of DIAL, showcasing its adaptability
to various distribution shifts. Additionally, the second-best performer, EPIG, also
considers the unlabeled test set and performs better than other baseline methods but
falls short of DIAL. Notably, BALD and Core-set exhibit similar behavior, possibly
attributed to their emphasis on model estimation rather than leveraging the test set for
predictive focus.
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Figure 5.6: The amount of chosen OOD samples for CIFAR10 with the presence of
OOD samples.

Table 5.3: CIFAR10: the presence of OOD samples: Number of Oracle calls at specific
accuracy rate values.

Methods 66% Acc. 62% Acc. 58% Acc.

Random 3956 1828 1220
Core-set 4468 1844 1412
BALD 4020 1636 1202
EPIG 3636 1700 1108
DIAL 3076 (−15.4%) 1556 (−4.9%) 1060 (−4.3%)

5.4 Limitations

The proposed DIAL algorithm is a min-max strategy for the individual settings. How-
ever, DIAL may not be the most beneficial approach in scenarios where the unlabeled
pool is very similar to the test set, where different selection strategies may perform
similarly and with smaller complexity. This limitation of DIAL is supported by the
experimental results of Section 5.3.4, where the DIAL algorithm performed similarly to
random selection for the CIFAR10 dataset (but better than all the other baselines).

Another limitation of DIAL is that it has a higher overhead computation compared to
other active learning methods such as BALD. This is because DIAL involves computing
the regret on the test set, which requires additional computations and could become
significant when the unlabeled pool or the test set are very large.
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5.5 Conclusions
In this study, we propose a min-max active learning criterion for the individual setting,
which does not rely on any distributional assumptions. We have also developed an
efficient method for computing this criterion for DNNs. Our experimental results
demonstrate that the proposed strategy, referred to as DIAL, is particularly effective in
the presence of OOD samples in the unlabeled pool. Specifically, our results show that
DIAL requires 12%, 10.4%, and 15.4% fewer Oracle calls than the next best method to
achieve a certain level of accuracy on the MNIST, EMNIST, and CIFAR10 datasets,
respectively.

79





Chapter 6

Concluding Remarks and Open
Questions

In this thesis, active learning was studied through the lens of information theory and in
particular via the concepts of universal prediction [25]. This approach has enabled the
discovery of interesting links between machine learning and information theory which
are utilized to the derivation of useful active learning criteria. Throughout this work,
we have considered the scenario in which the distribution of the test data may shift
from the training pool data. We argue that this is the most common scenario in practice
since it is very easy to collect a large quantity of unlabeled data and the significant
bottleneck is the labelling of these data points. Removing this distribution shift from
large scale unlabelled data pools will result with a significant labelling effort which
should be avoided. We solve this problem by granting the learner access to a very small
unlabelled test set. Since this set is unlabelled then privacy of the test is kept which may
be crucial for different applications such as medical data. Our proposed criteria utilizes
this test set and implicitly selects informative data points from the large data pool.

This work is be divided to two different data settings: stochastic and individual.
The stochastic setting assumes that the data follows some parametric distribution,
thus enables elegant mathematical results. It provides fairly low complexity selection
algorithms and is more widely used in the active learning literature. However, this
assumption is impossible to verify in reality. In contrast, the individual setting does
not assume the data follows any distribution and is thus the most general framework.
The downside is that the results are worst case and generally more computationally
complex.

In the first part of the thesis, the stochastic setting is investigated. First, a Capacity
- Redundancy theorem was derived for learning under this setting. This theorem en-
abled the derivation of a new active learning criterion which was analyzed for different
hypothesis classes. The proposed criterion, termed UAL, intrinsically balances an
exploration-exploitation trade-off in data selection. It was shown that it is not sufficient
to improve the model estimation but there should also be a focus on test prediction.
It was further shown, using a simulation that this criterion outperforms commonly
used uncertainty maximization criteria which focus on exploration. Later, the linear
separator problem with asymmetric noise was considered and a low complexity, noise
robust algorithm for active learning has been presented. It was proven that this al-
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gorithm achieves exponential decay of redundancy and empirically shown that the
error probability decays exponentially with the same rate to achieve optimal sample
complexity.

In the second part of the thesis, the individual setting was considered. This setting
is the most general approach for machine learning since it has no distributional assump-
tions and is thus the hardest for the same reason. A min-max active learning criterion,
IAL, which does not rely on any distributional assumptions was proposed. It has also
been demonstrated that for binary classification, IAL coincides with binary search for
separable data and optimal experimental design for linear regression. Therefore the
proposed criterion can be viewed as a unified active learning framework not specific
to any hypothesis class. An empirical test was conducted comparing IAL with several
other active learning criteria and demonstrating that IAL is superior in terms of sample
complexity. We have also developed an efficient method for computing this criterion
for DNNs. Our experimental results demonstrate that the proposed strategy, referred
to as DIAL, is particularly effective in the presence of OOD samples in the unlabeled
pool. As future work, we plan to investigate batch acquisition criteria that take into
account batch selection. This will allow us to consider the relationship between the
selected samples and the overall composition of the batch, which may lead to even
further improvements in performance.
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Appendix A

Proofs for Part I

A.1 Proof of Theorem 1
Proof. The proof is very similar to the one in [34] but with small technical modifications.
First, we induce a probability measure 𝜋(𝜃) over the parameter 𝜃:

𝑅 = min
{𝜙𝑡 }𝑁𝑡=1

min
𝑞

max
𝜋(𝜃)

E
{
log

(
𝑝 (𝑦 |𝑥, 𝜃)

𝑞
(
𝑦 |𝑥, 𝑥𝑁 , 𝑦𝑁

) )} (A.1)

where the worst 𝜃 is with probability one.
Then, observe that,

E
{
log

(
𝑝 (𝑦 |𝑥, 𝜃)

𝑞
(
𝑦 |𝑥, 𝑥𝑁 , 𝑦𝑁

) )} =
∑︁
𝜃

𝜋(𝜃)
∑︁

𝑥𝑁 ,𝑦𝑁 ,𝑥

𝑝

(
𝑦𝑁 , 𝑥𝑁 , 𝑥 |𝜃

)
𝐷𝐾𝐿

(
𝑝 (𝑦 |𝑥, 𝜃) | |𝑞

(
𝑦 |𝑥, 𝑥𝑁 , 𝑦𝑁

)) (A.2)

Since (A.2) is a non-negative weighted sum of convex functions (for each (𝑥, 𝑥𝑁 , 𝑦𝑁 ),
the KL divergence is convex in 𝑞

(
𝑦 |𝑥, 𝑥𝑁 , 𝑦𝑁

)
) and concave (linear) in 𝜋(𝜃), and the

set of distributions is the probability simplex which is compact and convex, then we can
apply the Minimax theorem [86].

Plugging (A.2) in to (A.1) and using the Minimax theorem,

𝑅 = min
{𝜙𝑡 }𝑁𝑡=1

max
𝜋(𝜃)

min
𝑞

E
{
log

(
𝑝 (𝑦 |𝑥, 𝜃)

𝑞
(
𝑦 |𝑥, 𝑥𝑁 , 𝑦𝑁

) )} (A.3)

Now we can find the learner 𝑞 (for each 𝑥, 𝑥𝑁 , 𝑦𝑁 ) which optimizes (A.3) for a given{
𝜙(𝑥𝑡 |𝑥𝑡−1, 𝑦𝑡−1)

}𝑁
𝑡=1 and 𝜋(𝜃).

Note that:

𝑝

(
𝜃 |𝑦𝑁 , 𝑥𝑁 , 𝑥

)
=
𝑝

(
𝑦𝑁 , 𝑥𝑁 , 𝑥, 𝜃

)
𝑝

(
𝑦𝑁 , 𝑥𝑁 , 𝑥

)
Then,

E
{
log

(
𝑝 (𝑦 |𝑥, 𝜃)

𝑞
(
𝑦 |𝑥, 𝑥𝑁 , 𝑦𝑁

) )} = ExN,yN,x

∑︁
𝜃

𝑝

(
𝜃 |𝑦𝑁 , 𝑥𝑁 , 𝑥

)
𝐷𝐾𝐿

(
𝑝 (𝑦 |𝑥, 𝜃) | |𝑞

(
𝑦 |𝑥, 𝑥𝑁 , 𝑦𝑁

)) (A.4)
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Then, the optimal 𝑞 which minimizes the KL divergence is:

𝑞∗
(
𝑦 |𝑥, 𝑥𝑁 , 𝑦𝑁

)
=

∑︁
𝜃

𝑝

(
𝜃 |𝑦𝑁 , 𝑥𝑁

)
𝑝 (𝑦 |𝜃, 𝑥) (A.5)

Note that 𝑞 is optimal regardless of the selection policy and thus optimal for both
passive and active learning. The predictor 𝑞 is a function of the training set and test
feature but also loosely dependent (for large 𝑁) on 𝜋(𝜃). The optimal prior 𝜋(𝜃) is
different for a given selection policy though.

The expected regret of the optimal predictor given a fixed selection strategy and
𝑁 examples is the conditional mutual information between the test label and model
parameters:

E
{
log

(
𝑝 (𝑦 |𝑥, 𝜃)

𝑞∗
(
𝑦 |𝑥, 𝑥𝑁 , 𝑦𝑁

) )} = 𝐼

(
𝑌 ; 𝜃 |𝑋,𝑌𝑁 , 𝑋𝑁

)
(A.6)

and 𝜋(𝜃) maximizes the mutual information (capacity achieving distribution) for a
given policy. □

A.2 Proof of Theorem 2.
Proof. We wish to analyze the conditional mutual information

𝐼 (𝜃;𝑌 |𝑋 = 𝑥,𝑌 𝑛 = 𝑦𝑛, 𝑋𝑛 = 𝑥𝑛)

First, we analyze the posterior:

𝑝 (𝑦 |𝑥, 𝑦𝑛, 𝑥𝑛) =
∑︁
𝜃

𝑝(𝜃 |𝑥, 𝑦𝑛, 𝑥𝑛)𝑝 (𝑦 |𝑥, 𝑦𝑛, 𝑥𝑛, 𝜃) (A.7)

Using the fact that given 𝜃 and 𝑥, 𝑦 is independent of 𝑥𝑛, 𝑦𝑛:

𝑝 (𝑦 |𝑥, 𝑦𝑛, 𝑥𝑛) =
∑︁
𝜃

𝑝(𝜃 |𝑦𝑛, 𝑥𝑛, 𝑥)𝑝 (𝑦 |𝑥, 𝜃) (A.8)

Using Bayes,

𝑝(𝜃 |𝑦𝑛, 𝑥𝑛, 𝑥) = 𝑝(𝑦𝑛, 𝑥𝑛, 𝑥 |𝜃)𝜋(𝜃)
𝑝(𝑦𝑛, 𝑥𝑛, 𝑥) (A.9)

Therefore,

𝑝(𝜃 |𝑦𝑛, 𝑥𝑛, 𝑥) =
Π𝑛
𝑡=1𝑝 (𝑦𝑡 |𝑥𝑡 , 𝜃) 𝜙

(
𝑥𝑡 |𝑥𝑡−1, 𝑦𝑡−1) 𝑝(𝑥 |𝜃)𝜋(𝜃)∑

𝜃 𝑝(𝑥 |𝜃)𝜋(𝜃)Π𝑛
𝑡=1𝑝 (𝑦𝑡 |𝑥𝑡 , 𝜃) 𝜙

(
𝑥𝑡 |𝑥𝑡−1, 𝑦𝑡−1) (A.10)

Eliminating 𝜙
(
𝑥𝑡 |𝑥𝑡−1, 𝑦𝑡−1)
𝑝(𝜃 |𝑦𝑛, 𝑥𝑛, 𝑥) =

Π𝑛
𝑡=1𝑝 (𝑦𝑡 |𝑥𝑡 , 𝜃) 𝑝(𝑥 |𝜃)𝜋(𝜃)∑

𝜃 𝑝(𝑥 |𝜃)𝜋(𝜃)Π𝑛
𝑡=1𝑝 (𝑦𝑡 |𝑥𝑡 , 𝜃)

(A.11)
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Therefore,

𝑝 (𝑦 |𝑥, 𝑦𝑛, 𝑥𝑛) =
∑︁
𝜃

𝑝 (𝑦 |𝑥, 𝜃)
Π𝑛
𝑡=1𝑝 (𝑦𝑡 |𝑥𝑡 , 𝜃) 𝑝(𝑥 |𝜃)𝜋(𝜃)∑

𝜃 𝑝(𝑥 |𝜃)𝜋(𝜃)Π𝑛
𝑡=1𝑝 (𝑦𝑡 |𝑥𝑡 , 𝜃)

(A.12)

and thus, for a given 𝜋(𝜃), the value of the posterior 𝑝 (𝑦 |𝑥, 𝑦𝑛, 𝑥𝑛) does not depend on
the value of the selection policy.

We can write the conditional mutual information explicitly,

𝐼 (𝜃;𝑌 |𝑋,𝑌 𝑛, 𝑋𝑛) =
∑︁
𝑥,𝑦𝑛,𝑥𝑛

𝐼 (𝜃;𝑌 |𝑋 = 𝑥,𝑌 𝑛 = 𝑦𝑛, 𝑋𝑛 = 𝑥𝑛) ·

𝑝 (𝑥, 𝑦𝑛, 𝑥𝑛)
(A.13)

Then,

𝐼 (𝜃;𝑌 |𝑋,𝑌 𝑛, 𝑋𝑛) =
∑︁
𝑥,𝑦𝑛,𝑥𝑛

𝐼 (𝜃;𝑌 |𝑋 = 𝑥,𝑌 𝑛 = 𝑦𝑛, 𝑋𝑛 = 𝑥𝑛) ·(∑︁
𝜃

𝑝(𝑥 |𝜃)𝜋(𝜃)Π𝑛
𝑡=1𝑝 (𝑦𝑡 |𝑥𝑡 , 𝜃) 𝜙

(
𝑥𝑡 |𝑥𝑡−1, 𝑦𝑡−1

)) (A.14)

which can be written as,

𝐼 (𝜃;𝑌 |𝑋,𝑌 𝑛, 𝑋𝑛) =
∑︁
𝑦𝑛,𝑥𝑛

𝜙

(
𝑥𝑡 |𝑥𝑡−1, 𝑦𝑡−1

)
·

𝐼 (𝜃;𝑌 |𝑋,𝑌 𝑛 = 𝑦𝑛, 𝑋𝑛 = 𝑥𝑛) ·
(∑︁
𝜃

𝜋(𝜃)Π𝑛
𝑡=1𝑝 (𝑦𝑡 |𝑥𝑡 , 𝜃)

) (A.15)

Since the weighted average of positive values (mutual information is always larger or
equal to 0) is always bigger than the minimum of the set, we come to the conclusion that
the optimal selection strategy is a delta function for each step which correspond to the
trajectory 𝑥𝑛, 𝑦𝑛 which minimizes the conditional mutual information 𝐼 (𝜃;𝑌 |𝑋, 𝑋𝑛 =
𝑥𝑛, 𝑌 𝑛 = 𝑦𝑛). □

A.3 Proof of Theorem 3
Proof. Applying UAL and assuming the noise is Gaussian with the response model
(2.18):

𝐼 (𝜃; 𝑦𝑡𝑒𝑠𝑡 |𝑥𝑡𝑒𝑠𝑡 , 𝑥
𝑛, 𝑦𝑛) = ℎ(𝑦𝑡𝑒𝑠𝑡 |𝑥𝑡𝑒𝑠𝑡 , 𝑥

𝑛, 𝑦𝑛) − ℎ(𝑦𝑡𝑒𝑠𝑡 |𝜃, 𝑥𝑡𝑒𝑠𝑡 , 𝑥
𝑛, 𝑦𝑛) (A.16)

Since the noise, 𝑧 is independent from the label 𝑦 given the feature vector 𝑥, then

𝐼 (𝜃; 𝑦𝑡𝑒𝑠𝑡 |𝑥𝑡𝑒𝑠𝑡 , 𝑥
𝑛, 𝑦𝑛) = ℎ(𝑦𝑡𝑒𝑠𝑡 |𝑥𝑡𝑒𝑠𝑡 , 𝑥

𝑛, 𝑦𝑛) − ℎ(𝑧) (A.17)

Using the expression for Gaussian entropy,

𝐼 (𝜃; 𝑦𝑡𝑒𝑠𝑡 |𝑥𝑡𝑒𝑠𝑡 , 𝑥
𝑛, 𝑦𝑛) = ℎ(𝑦𝑡𝑒𝑠𝑡 |𝑥𝑡𝑒𝑠𝑡 , 𝑥

𝑛, 𝑦𝑛) − 1
2

log
(
2𝜋𝑒𝜎2

𝑍

)
(A.18)
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UAL first finds the prior 𝜋(𝜃) which maximizes the mutual information in (A.18).
Since there is a power constraint on 𝜃 then 𝑦 will also be power limited due to the linear
model.

The distribution which will maximize the the differential entropy for 𝑦 |𝑋, 𝜃 under
the power constraint is an i.i.d Gaussian distribution. This distribution can be achieved
if the prior 𝜃 ∼ N(0, 𝜎2

𝜃
𝐼𝑑) is used. Therefore, in the case of the linear regression

hypothesis class, the capacity achieving prior can be computed analytically.
Using [87],

𝐼 (𝜃; 𝑦𝑡𝑒𝑠𝑡 |𝑥𝑡𝑒𝑠𝑡 , 𝑥
𝑛, 𝑦𝑛) = E𝑥𝑡𝑒𝑠𝑡

(
log

(
1 + 𝑥𝑇

𝑡𝑒𝑠𝑡
𝑄𝑥

𝑡𝑒𝑠𝑡

))
(A.19)

where 𝑄 =

(
𝑋𝑇𝑋 + 1

𝜎2
𝜃

𝐼𝑑

)−1
is the inverse covariance matrix of 𝑝

(
𝜃 |𝑥𝑛, 𝑦𝑛

)
which is

also Gaussian and thus easy to compute using Kalman filtering. The expectation is
performed on the distribution of the test features 𝑥

𝑡𝑒𝑠𝑡
.

Upper bounding (A.19) we get,

E𝑥𝑡𝑒𝑠𝑡

(
log

(
1 + 𝑥𝑇

𝑡𝑒𝑠𝑡
𝑄𝑥

𝑡𝑒𝑠𝑡

))
≤ E𝑥𝑡𝑒𝑠𝑡

(
𝑥𝑇
𝑡𝑒𝑠𝑡
𝑄𝑥

𝑡𝑒𝑠𝑡

)
(A.20)

where the bound is tight when 𝑥𝑇
𝑡𝑒𝑠𝑡
𝑄𝑥

𝑡𝑒𝑠𝑡
<< 1, which corresponds to high SNR

scenarios.
Therefore,

min
𝑥𝑛
𝐼 (𝜃; 𝑦 |𝑥

𝑡𝑒𝑠𝑡
, 𝑥𝑛, 𝑦𝑛) ≤

min
𝑥𝑛
𝑇𝑟

(
E

(
𝑥
𝑡𝑒𝑠𝑡
𝑥𝑇
𝑡𝑒𝑠𝑡

)
𝑄

(
𝑥𝑛

) ) (A.21)

When the training data is full rank then the correlation matrix is the identity matrix
and we can neglect it. □

A.4 Proof of Theorem 4
Proof. In [52], it is proved that PM achieves capacity on the BAC. Achieving capacity
essentially means that the maximum amount of bits are transmitted and decoded without
error with the minimal amount of channel uses. This is analogous to high accuracy
on 𝜃0 (low generalization error) using as few Oracle calls as possible. This is exactly
the target of active learning and we will now show that PM on BAC is equivalent to a
specific active learning policy for the hypotheses class discussed here.

The proposed selection scheme selects the training feature, 𝑥𝑡 , based on previously
observed labels 𝑦𝑡−1 (𝑥𝑡−1 are a deterministic function of 𝑦𝑡−1):

𝑥𝑡 = 𝐹
−1
𝜃 |𝑦𝑡−1

(
𝑝 − 0.5
𝑝 + 𝑞 − 1

)
(A.22)

Therefore, the input to the BAC, 𝑣𝑡 , is computed according to:

𝑣𝑡 =

{
0 𝑥𝑡 ≤ 𝜃0
1 𝑥𝑡 > 𝜃0

(A.23)
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Now, we would like to show that this selection of 𝑥𝑡 generates 𝑣𝑡 which achieves
capacity for the BAC.

Define an auxiliary Bernoulli random variable 𝑄 ∼ 𝐵𝑒𝑟
(
𝑝−0.5
𝑝+𝑞−1

)
and use the fact

that a Cumulative Distribution Function (CDF) is always increasing, then 𝑣𝑡 can also be
described as:

𝑣𝑡 = 𝐹
−1
𝑄

(
𝐹𝜃 |𝑌 𝑡−1 (𝜃0)

)
(A.24)

which is exactly the PM scheme for a BAC channel with 𝑝, 𝑞!
Therefore, the error probability on the message 𝜃 approaches zero as the number of

channel uses, 𝑛, goes to infinity:

lim
𝑛→∞

sup
𝜃1

∫ 𝜃1+2−𝑛𝐶𝑊

𝜃1

𝑝(𝜃 |𝑦𝑛, 𝑥𝑛)𝑑𝜃 = 1 (A.25)

This means that most of the probability mass is centred in an interval of length 2−𝑛𝐶𝑊

where the true barrier, 𝜃0, resides, where 𝑄 is the input distribution to the BAC and𝑊
is the BAC transition probability.

Now we can analyze the active learning criterion for the PM selection with training
𝑥𝑛, 𝑦𝑛. We will compute the desired mutual information using the difference of the two
conditional entropies:

𝐻 (𝑌 |𝑋, 𝑋𝑛 = 𝑥𝑛, 𝑌 𝑛 = 𝑦𝑛) =∫
𝐻𝐵

(∫
𝑃(𝑌 = 1|𝑥, 𝜃)𝑝(𝜃 |𝑥𝑛, 𝑦𝑛)𝑑𝜃

)
𝑝(𝑥)𝑑𝑥

(A.26)

and the conditional entropy with 𝜃:

𝐻 (𝑌 |𝑋, 𝜃, 𝑋𝑛 = 𝑥𝑛, 𝑌 𝑛 = 𝑦𝑛) =∫
𝐻𝐵 (𝑃 (𝑌 = 1|𝑥, 𝜃)) 𝑝(𝜃 |𝑥𝑛, 𝑦𝑛, 𝑥)𝑑𝜃𝑝(𝑥)𝑑𝑥

(A.27)

For BAC, the binary entropy conditioned on a specific 𝑥 and 𝜃, can be written as,

𝐻 (𝑌 |𝑥, 𝑥𝑛, 𝑦𝑛) =
𝐻𝐵

( (
𝑞

(
1 − 𝐹𝜃 |𝑥𝑛,𝑦𝑛 (𝑥)

)
+ (1 − 𝑝)𝐹𝜃 |𝑥𝑛,𝑦𝑛 (𝑥)

) ) (A.28)

𝐻 (𝑌 |𝑥, 𝜃, 𝑥𝑛, 𝑦𝑛) = 𝐻𝐵 (𝑞𝛿 (𝑥 ≤ 𝜃) + (1 − 𝑝)𝛿 (𝑥 > 𝜃)) (A.29)

Therefore,

lim
𝑛→∞

𝐻 (𝑌 |𝑋, 𝑥𝑛, 𝑦𝑛) =
∫ 𝜃1

0
𝐻𝐵 (𝑞) 𝑝(𝑥)𝑑𝑥

+
∫ 1

𝜃1+2−𝑛𝐶𝑊

𝐻𝐵 (1 − 𝑝) 𝑝(𝑥)𝑑𝑥

+
∫ 𝜃1+2−𝑛𝐶𝑊

𝜃1

𝐻𝐵 (𝑞(1 − 𝐹𝜃 (𝑥)) + (1 − 𝑝)𝐹𝜃 (𝑥)) 𝑝(𝑥)𝑑𝑥

(A.30)
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where 𝜃1 is estimated using (A.25) for a division of the interval (0, 1) to bins on length
2−𝑛𝐶𝑊 .

Similarly,

lim
𝑛→∞

𝐻 (𝑌 |𝑋, 𝜃, 𝑥𝑛, 𝑦𝑛) ≥
∫ 𝜃1

0
𝐻𝐵 (𝑞) 𝑝(𝑥)𝑑𝑥+∫ 1

𝜃1+2−𝑛𝐶𝑊

𝐻𝐵 (1 − 𝑝) 𝑝(𝑥)𝑑𝑥
(A.31)

Therefore the desired mutual information can be upper bounded by,

0 ≤ lim
𝑛→∞

𝐼 (𝜃;𝑌 |𝑋, 𝑋𝑛, 𝑌 𝑛) ≤ 𝛼2−𝑛𝐶𝑊 (A.32)

This concludes the proof that active learning via PM achieves exponential decay
and the important takeaway here is that the decay factor is dependent on the channel
and the input distribution which achieved the capacity.

□

A.5 Proof of Theorem 5
Proof. Since (𝑥𝑛, 𝑦𝑛) were selected using PM, then based on the results from [54], the
posterior satisfies:

lim
𝑛→∞

sup
𝜃1

∫ 𝜃1+2−𝑛𝐶𝑊

𝜃1

𝑝(𝜃 |𝑥𝑛, 𝑦𝑛)𝑑𝜃 = 1 (A.33)

Using Bayes,

lim
𝑛→∞

1
𝑍

sup
𝜃1

∫ 𝜃1+2−𝑛𝐶𝑊

𝜃1

𝑝(𝑦𝑛 |𝑥𝑛, 𝜃)𝜋𝑢 (𝜃)𝑑𝜃 = 1 (A.34)

where 𝑍 =
∫
𝑝(𝑦𝑛 |𝑥𝑛, 𝜃)𝜋𝑢 (𝜃)𝑑𝜃.

We define the interval 𝐴 = [𝜃1, 𝜃1 + 2−𝑛𝐶𝑊 ] and thus:

lim
𝑛→∞

∫
𝜃∈𝐴𝑐

𝑝(𝑦𝑛 |𝑥𝑛, 𝜃)𝜋𝑢 (𝜃)𝑑𝜃 = 0 (A.35)

where the set 𝐴𝑐 is the complementary set to 𝐴.
For the capacity achieving prior 𝜋∗(𝜃), a given training set size 𝑛 and using Hölder’s

inequality:

0 ≤
∫
𝜃∈𝐴𝑐

𝑝(𝑦𝑛 |𝑥𝑛, 𝜃) 𝜋𝑢 (𝜃)𝜋
∗(𝜃)

𝜋𝑢 (𝜃)
𝑑𝜃 ≤∫

𝜃∈𝐴𝑐

𝑝(𝑦𝑛 |𝑥𝑛, 𝜃)𝜋𝑢 (𝜃)𝑑𝜃
∫
𝜃∈𝐴𝑐

𝜋∗(𝜃)
𝜋𝑢 (𝜃)

𝑑𝜃

(A.36)

Based on the multiplication law for limits and since the two limits exist, then:

0 ≤ lim
𝑛→∞

∫
𝜃∈𝐴𝑐

𝑝(𝑦𝑛 |𝑥𝑛, 𝜃)𝜋∗(𝜃)𝑑𝜃 ≤

lim
𝑛→∞

∫
𝜃∈𝐴𝑐

𝑝(𝑦𝑛 |𝑥𝑛, 𝜃)𝜋𝑢 (𝜃)𝑑𝜃 lim
𝑛→∞

∫
𝜃∈𝐴𝑐

𝜋∗(𝜃)
𝜋𝑢 (𝜃)

𝑑𝜃

(A.37)
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Using (A.35):

0 ≤ lim
𝑛→∞

∫
𝜃∈𝐴𝑐

𝑝(𝑦𝑛 |𝑥𝑛, 𝜃)𝜋∗(𝜃)𝑑𝜃 ≤

0 · lim
𝑛→∞

∫
𝜃∈𝐴𝑐

𝜋∗(𝜃)
𝜋𝑢 (𝜃)

𝑑𝜃

(A.38)

Since lim
𝑛→∞

∫
𝜃∈𝐴𝑐

𝜋∗ (𝜃)
𝜋𝑢 (𝜃) 𝑑𝜃 exists and is finite for any probability distribution 𝜋∗(𝜃),

then
lim
𝑛→∞

∫
𝜃∈𝐴𝑐

𝑝(𝑦𝑛 |𝑥𝑛, 𝜃)𝜋𝑢 (𝜃)𝑑𝜃 = 0

.
□

A.6 Proof of Theorem 6
Proof. Assume there is a homogeneous hyper-plane separating two complementary
volumes in R𝑑 . This hyper-plane is defined by a unit length normal vector 𝑤 which can
be described by its spherical coordinates 𝜃.

The idea of SPM is to successively estimate the spherical coordinates of 𝑤 using PM,
one coordinate at a time. In the first iteration, the spherical coordinate, 𝜃𝑑−1 is estimated
and used for the estimation of the next spherical coordinate, 𝜃𝑑−2. This process repeats
until all the coordinates are estimated.

A.6.1 SPM Flow
In the first step of Algorithm 1, which corresponds to 𝜃𝑑−1, SPM searches for the
intersection point between the hyper plane defined by 𝑤 and an arc, 𝑟 (𝜙) defined by the
following description:

𝑟 (𝜙) = [𝑠𝑖𝑛(𝜙), 𝑐𝑜𝑠(𝜙), 0, 0, ..., 0]

for 𝜙 ∈ (0, 𝜋).
This problem is a 1-dimensional noisy barrier model on the interval (0, 𝜋), thus PM

will query points in this interval and provide an estimate of the intersection point. The
estimated intersection point, 𝑥𝑑−1

𝑛
, after 𝑛 training points can be described as:

𝑥𝑑−1
𝑛

= [𝑠𝑖𝑛(𝜙𝑛), 𝑐𝑜𝑠(𝜙𝑛), 0, 0, ..., 0] (A.39)

where 𝜙𝑛 is final queried point (angle) in the interval (0, 𝜋).
The relation between 𝜙𝑛 and the estimate 𝜃𝑑−1 of the spherical coordinate 𝜃𝑑−1 (of

𝑤), is given by:

𝜃𝑑−1 = 𝜙𝑛 +
𝜋

2 (A.40)

Using (A.25), the following holds:
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lim
𝑛→∞

𝑝(𝜃𝑑−1 |𝑥𝑛, 𝑦𝑛) = 2𝑛𝐶𝑊 (A.41)

for any 𝜃𝑑−1 ∈ [𝜃𝑑−1 − 2−𝑛𝐶𝑊−1, 𝜃𝑑−1 + 2−𝑛𝐶𝑊−1]
In the next iteration of step 4 in Algorithm 1, the intersection between the hyper-

plane and the arc, 𝑟 (𝜙):
𝑟 (𝜙) = [𝑠𝑖𝑛(𝜃𝑑−1)𝑠𝑖𝑛(𝜙), 𝑐𝑜𝑠(𝜃𝑑−1)𝑠𝑖𝑛(𝜙), 𝑐𝑜𝑠(𝜙), 0, 0, ..., 0]

for 𝜙 ∈ (0, 𝜋)
The estimated intersection point after 𝑛 training points:

𝑥𝑑−2
𝑛

= [𝑠𝑖𝑛(𝜃𝑑−1)𝑠𝑖𝑛(𝜙𝑛), 𝑐𝑜𝑠(𝜃𝑑−1)𝑠𝑖𝑛(𝜙𝑛),
𝑐𝑜𝑠(𝜙𝑛), 0, 0, ..., 0]

Again, the estimated spherical coordinate is:

𝜃𝑑−2 = 𝜙𝑛 +
𝜋

2 (A.42)

This process goes on for all the spherical coordinates.

A.6.2 Proof Idea
Now that we have detailed the mechanism generating the estimates for the spherical
coordinates, we can show how the active learning criterion decays for this training set
selection policy. The main idea is to show that most of the probability mass of the joint
posterior for the spherical coordinates reside inside a narrow enough cone in space,
such that the active learning criterion decays exponentially fast to zero.

The active learning criterion, which is the conditional mutual information, is a
difference of the conditional entropy of the test label 𝑌 given the training and test
feature 𝑋:

𝐻 (𝑌 |𝑋, 𝑋𝑑𝑛 = 𝑥𝑑𝑛, 𝑌 𝑑𝑛 = 𝑦𝑑𝑛) =∫
𝐻𝐵

(∫
𝑃(𝑌 = 1|𝑥, 𝜃)𝑝(𝜃 |𝑥𝑑𝑛, 𝑦𝑑𝑛)𝑑𝜃

)
𝑝(𝑥)𝑑𝑥

(A.43)

and the conditional entropy of the test label 𝑌 given the training, test feature 𝑋 and
model parameter 𝜃:

𝐻 (𝑌 |𝑋, 𝜃, 𝑋𝑑𝑛 = 𝑥𝑑𝑛, 𝑌 𝑑𝑛 = 𝑦𝑑𝑛) =∫
𝐻𝐵

(
𝑃(𝑌 = 1|𝑥, 𝜃)

)
𝑝(𝜃 |𝑥𝑑𝑛, 𝑦𝑑𝑛)𝑑𝜃𝑝(𝑥)𝑑𝑥

(A.44)

The spherical coordinates posterior can be decomposed using the chain rule for
probabilities,

𝑝(𝜃 |𝑥𝑛𝑇 , 𝑦𝑛𝑇 ) = Π1
𝑖=𝑑−1𝑝(𝜃𝑖 |𝜃

𝑑−1
𝑖+1 , 𝑥

𝑛𝑇 , 𝑦𝑛𝑇 ) (A.45)

where 𝑛𝑇 = 𝑑𝑛.
We will now concentrate on the individual posteriors and show that they concentrate

to the correct spherical coordinates fast.
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A.6.3 Posterior for 𝜃𝑑−2

For simplicity, we will first compute the posterior 𝑝(𝜃𝑑−2 |𝜃𝑑−1, 𝑥
𝑛𝑇 , 𝑦𝑛𝑇 ). After running

the PM scheme for 𝜃𝑑−2, all normal vectors, 𝑤, which are possible candidates for the
true normal vector, must satisfy the following equality with the estimated threshold
point 𝑥𝑑−2

𝑛
:

lim
𝑛→∞

Pr
(��𝑤𝑇𝑥𝑑−2

𝑛

�� ≤ 2−𝑛𝐼 |𝜃𝑑−1, 𝑥
𝑛, 𝑦𝑛

)
= 1

This equality basically creates a constraint on the possible values 𝜃𝑑−2, can take and
we can explicitly write this as:��𝑤𝑇𝑥𝑑−2

𝑛

�� = | sin(𝜃𝑑−1)𝑠𝑖𝑛(𝜙𝑛)𝑠𝑖𝑛(𝜃𝑑−1)𝑠𝑖𝑛(𝜃𝑑−2)
+ 𝑐𝑜𝑠(𝜃𝑑−1)𝑠𝑖𝑛(𝜙𝑛)𝑐𝑜𝑠(𝜃𝑑−1)𝑠𝑖𝑛(𝜃𝑑−2)
+ 𝑐𝑜𝑠(𝜙𝑛)𝑐𝑜𝑠(𝜃𝑑−2) | ≤ 2−𝑛𝐼

which can be written as:

|𝑠𝑖𝑛(𝜙𝑛)𝑠𝑖𝑛(𝜃𝑑−2)𝛾𝑑−1 + 𝑐𝑜𝑠(𝜙𝑛)𝑐𝑜𝑠(𝜃𝑑−2) | ≤ 2−𝑛𝐼 (A.46)

where,
𝛾𝑑−1 = 𝑠𝑖𝑛(𝜃𝑑−1)𝑠𝑖𝑛(𝜃𝑑−1) + 𝑐𝑜𝑠(𝜃𝑑−1)𝑐𝑜𝑠(𝜃𝑑−1) (A.47)

We note that 𝛾𝑑−1 is an inner product between two unit length vectors and thus:

𝛾𝑑−1 = cos(𝜃𝑑−1 − 𝜃𝑑−1)

and according to (A.41), with probability approaching to 1 as 𝑛 goes to infinity,
𝛾𝑑−1 ≤ cos(2−𝑛𝐶𝑊 ). We also note that since 2−𝑛𝐶𝑊 is small then we can approximate
𝛾𝑑−1 using its Taylor expansion:

𝛾𝑑−1 ≈ 1 − 2−2𝑛𝐶𝑊

2
(A.48)

Therefore we can approximate (A.46) as,����𝑠𝑖𝑛(𝜙𝑛)𝑠𝑖𝑛(𝜃𝑑−2)
(
1 − 2−2𝑛𝐼

2

)
+ 𝑐𝑜𝑠(𝜙𝑛)𝑐𝑜𝑠(𝜃𝑑−2)

���� ≤ 2−𝑛𝐼 (A.49)

This is equivalent to:����cos(𝜙𝑛 − 𝜃𝑑−2) −
2−2𝑛𝐼

2
sin(𝜙𝑛)𝑠𝑖𝑛(𝜃𝑑−2)

���� ≤ 2−𝑛𝐼 (A.50)

We will use the reverse triangle inequality and get:����|cos(𝜙𝑛 − 𝜃𝑑−2) | −
����2−2𝑛𝐼

2
sin(𝜙𝑛)𝑠𝑖𝑛(𝜃𝑑−2)

�������� ≤ 2−𝑛𝐼 (A.51)

Therefore,

|cos(𝜙𝑛 − 𝜃𝑑−2) | ≤ 2−𝑛𝐼 + 2−2𝑛𝐼

2
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For large enough 𝑛, we can expand cosine around 𝜋
2 and get that the angles 𝜃𝑑−2

satisfy:

|𝜃𝑑−2 − 𝜃𝑑−2 | ≤ 2−𝑛𝐼 + 2−2𝑛𝐼

2
(A.52)

Which basically means that:

lim
𝑛→∞

Pr
(
|𝜃𝑑−2 − 𝜃𝑑−2 | ≤ 2−𝑛𝐼 + 2−2𝑛𝐼

2
|𝜃𝑑−1, 𝑥

𝑛, 𝑦𝑛
)
= 1 (A.53)

which basically means for large enough 𝑛 (𝑑 is fixed):

lim
𝑛→∞

Pr
(
|𝜃𝑑−2 − 𝜃𝑑−2 | ≤ 2−𝑛𝐼 |𝜃𝑑−1, 𝑥

𝑛, 𝑦𝑛
)
≈ 1 (A.54)

Therefore, we approximately get the same condition as in (A.41).

A.6.4 Posterior for 𝜃𝑖
We can now move to the general case of 𝜃𝑖. We will show using recursion, that the
posterior concentrates to the correct value appropriately. The final threshold point after
𝑛 labeling operations for the i’th spherical coordinate is defined as:

𝑥𝑖
𝑛
= [sin(𝜙𝑛)Π𝑑−1

𝑙=1,𝑙≠𝑖 sin(𝜃𝑙), cos(𝜃𝑑−1) sin(𝜙𝑛)Π𝑑−2
𝑙=1,𝑙≠𝑖 sin(𝜃𝑙),

..., cos(𝜙𝑛)Π𝑖−1
𝑙=1 sin(𝜃𝑙), ..., cos(𝜃1)]

Again, due to PM, the following holds:

lim
𝑛→∞

Pr
(��𝑤𝑇𝑥𝑖

𝑛

�� ≤ 2−𝑛𝐼 |𝜃𝑑−1
𝑖+1 , 𝑥

𝑛𝑇 , 𝑦𝑛𝑇
)
= 1

We define the following recursion rule:

𝛾𝑖 = 𝑠𝑖𝑛(𝜃𝑖)𝑠𝑖𝑛(𝜃𝑖)𝛾𝑖+1 + 𝑐𝑜𝑠(𝜃𝑖)𝑐𝑜𝑠(𝜃𝑖) (A.55)

with (A.47) as the initial condition.
The inner product ,𝑤𝑇𝑥𝑖

𝑛
, can be written as:

𝑤𝑇𝑥𝑖
𝑛
= sin(𝜙𝑛)𝑠𝑖𝑛(𝜃𝑖)𝛾𝑖+1 + 𝑐𝑜𝑠(𝜙𝑛)𝑐𝑜𝑠(𝜃𝑖) (A.56)

If we knew that 𝛾𝑖+1 ≈ 1 − 2−2𝑛𝐶𝑊

2 we could use the same arguments from the
previous section to bound the posterior. Using (A.54), 𝛾𝑑−2 ≈ 1 − 2−2𝑛𝐶𝑊

2 and applying
(A.55) in recursion, we get:

lim
𝑛→∞

Pr
(
|𝜃𝑖 − 𝜃𝑖 | ≤ 2−𝑛𝐼 |𝜃𝑑−1

𝑖+1 , 𝑥
𝑑𝑛, 𝑦𝑑𝑛

)
≈ 1 (A.57)
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A.6.5 Asymptotic Decay of Mutual Information
Finally, we will use the posteriors computed in the previous sections to give an upper
bound on the conditional mutual information. The multiplication of the posteriors,
𝑝(𝜃𝑖 |𝜃𝑑−1

𝑖+1 , 𝑥
𝑛𝑇
𝑖
, 𝑦
𝑛𝑇
𝑖
), form a cone with probability approaching 1 in 𝑥 ∈ R𝑑 . The unit

vector �̂� is a vector in the center of this cone. Using the results on 𝑝(𝜃𝑖 |𝜃𝑑−1
𝑖+1 , 𝑥

𝑛𝑇
𝑖
, 𝑦
𝑛𝑇
𝑖
),

(A.28) and (A.29), we can compute upper bounds on the conditional mutual information.
For the BAC,

𝑃(𝑌 = 1|𝑥, 𝑥𝑛𝑇 , 𝑦𝑛𝑇 ) =

= 𝑞

∫
1
(
𝑥𝑇𝑤 ≤ 0

)
Π𝑑
𝑖=1𝑝(𝜃𝑖 |𝜃

𝑖−1, 𝑥𝑛𝑇
𝑖
, 𝑦
𝑛𝑇
𝑖
)𝑑𝜃+

+ (1 − 𝑝)
∫

1
(
𝑥𝑇𝑤 ≥ 0

)
Π𝑑
𝑖=1𝑝(𝜃𝑖 |𝜃

𝑖−1, 𝑥𝑛𝑇
𝑖
, 𝑦
𝑛𝑇
𝑖
)𝑑𝜃

(A.58)

Therefore,

lim
𝑛→∞

𝐻 (𝑌 |𝑋, 𝑥𝑛, 𝑦𝑛) =
∫
⟨𝑥,�̂�⟩
|𝑥 | ≤−2−𝑛𝐶𝑊

𝐻𝐵 (𝑞) 𝑝(𝑥)𝑑𝑥+∫
⟨𝑥,�̂�⟩
|𝑥 | >2−𝑛𝐶𝑊

𝐻𝐵 (1 − 𝑝) 𝑝(𝑥)𝑑𝑥 +
∫
|⟨𝑥,�̂�⟩ |
|𝑥 | ≤2−𝑛𝐶𝑊

𝐻𝐵

(
𝑞(1 − 𝐹𝜃 |𝑥𝑛,𝑦𝑛 (𝑥)) + (1 − 𝑝)𝐹𝜃 |𝑥𝑛,𝑦𝑛 (𝑥)

)
𝑝(𝑥)𝑑𝑥

(A.59)

Similarly,

lim
𝑛→∞

𝐻 (𝑌 |𝑋, 𝜃, 𝑥𝑛, 𝑦𝑛) ≥
∫
⟨𝑥,�̂�⟩
|𝑥 | ≤−2−𝑛𝐶𝑊

𝐻𝐵 (𝑞) 𝑝(𝑥)𝑑𝑥+∫
⟨𝑥,�̂�⟩
|𝑥 | >2−𝑛𝐶𝑊

𝐻𝐵 (1 − 𝑝) 𝑝(𝑥)𝑑𝑥
(A.60)

Therefore the desired mutual information can be upper bounded by,

0 ≤ lim
𝑛→∞

𝐼 (𝜃;𝑌 |𝑋, 𝑋𝑛, 𝑌 𝑛) ≤ 𝛼2−
𝑛𝑇
𝑑
𝐶𝑊 (A.61)

□
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Appendix B

Proofs for Part II

B.1 Proof of Theorem 8
Proof. In this proof we will address the two forms of IAL criterion: (4.6) and (4.7).
First we look at the greedy criterion defined in Eq. (4.6) which can be written as:

𝐶𝑛|𝑛−1 = min
𝑥𝑛∈X

max
𝑦𝑛∈Y

∑︁
𝑣∈V

∫
𝑢∈U

𝑝
(
𝑣 |𝑢, 𝜃𝑛

)
𝑑𝑢 (B.1)

where 𝜃𝑛 is the maximum likelihood estimation based on training and test data:

𝜃𝑛 = arg max
𝜃∈Θ

𝑝 (𝑦𝑛, 𝑣 |𝑥𝑛, 𝑢, 𝜃) (B.2)

In a greedy scheme, 𝑧𝑛−1 is assumed known and the likelihood function, 𝑝 (𝑦𝑛, 𝑣 |𝑥𝑛, 𝑢, 𝜃),
is basically a multiplication of indicator functions resulting in a rectangle window func-
tion around the correct barrier. There are multiple solutions for the maximum likelihood
estimator and we select the mid point of the posterior’s support, which is uniformly
distributed.

We can write the likelihood for 𝑧𝑛−1 as:

𝑝

(
𝑦𝑛−1 |𝑥𝑛−1, 𝜃

)
∼ 1

(
𝜃 ≥ 𝜃𝑛−1

𝑚𝑖𝑛

)
1

(
𝜃 < 𝜃𝑛−1

𝑚𝑎𝑥

)
(B.3)

where 𝜃𝑛−1
𝑚𝑖𝑛

and 𝜃𝑛−1
𝑚𝑎𝑥 represent the support of the posterior on 𝜃 given 𝑥𝑛−1, 𝑦𝑛−1.

Once a new feature point 𝑥𝑛 is selected (any point in the support of 𝑝
(
𝑦𝑛−1 |𝑥𝑛−1, 𝜃

)
),

then based on its label 𝑦𝑛 which can be arbitrary (we train for the worst), the likelihood
window function gets split again.

For 𝑦𝑛 = 1 − 𝛼:

𝑝 (𝑦𝑛 |𝑥𝑛, 𝜃) ∼ 1 (𝜃 ≥ 𝑥𝑛) 1
(
𝜃 < 𝜃𝑛−1

𝑚𝑎𝑥

)
(B.4)

For 𝑦𝑛 = 𝛼:
𝑝 (𝑦𝑛 |𝑥𝑛, 𝜃) ∼ 1

(
𝜃 ≥ 𝜃𝑛−1

𝑚𝑖𝑛

)
1 (𝜃 < 𝑥𝑛) (B.5)

For the computation of (4.6), which is the pNML normalization factor, we are
interested in the behaviour of the distribution 𝑝

(
𝑣 |𝑢, 𝜃𝑛

)
for different test data points, 𝑢:
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For 𝑦𝑛 = 1 − 𝛼:∫ 1

0

1∑︁
𝑣=0

𝑝
(
𝑣 |𝑢, 𝜃𝑛

)
𝑑𝑢 =

∫ 𝑥𝑛

0

∑︁
𝑣∈V

𝑝
(
𝑣 |𝑢, 𝜃𝑛

)
𝑑𝑢

+
∫ 𝜃𝑛−1

𝑚𝑎𝑥

𝑥𝑛

∑︁
𝑣∈V

𝑝
(
𝑣 |𝑢, 𝜃𝑛

)
𝑑𝑢 +

∫ 1

𝜃𝑛−1
𝑚𝑎𝑥

∑︁
𝑣∈V

𝑝
(
𝑣 |𝑢, 𝜃𝑛

)
𝑑𝑢

(B.6)

For 𝑦𝑛 = 1 − 𝛼, if the test feature, 𝑢, satisfies 𝜃𝑛−1
𝑚𝑎𝑥 ≤ 𝑢 then 𝑝 (𝑣 = 1|𝑢, 𝜃) = 1 and

if 𝑥𝑛 ≤ 𝑢, then 𝑝 (𝑣 = 1|𝑢, 𝜃) = 0.
Therefore, ∫ 1

0

1∑︁
𝑣=0

𝑝
(
𝑣 |𝑢, 𝜃𝑛

)
𝑑𝑢 = |𝑥𝑛 |

+
∫ 𝜃𝑛−1

𝑚𝑎𝑥

𝑥𝑛

∑︁
𝑣∈V

𝑝
(
𝑣 |𝑢, 𝜃𝑛

)
𝑑𝑢 + |1 − 𝜃𝑛−1

𝑚𝑎𝑥 |
(B.7)

Now we observe that when 𝑥𝑛 ≤ 𝑢 ≤ 𝜃𝑛−1
𝑚𝑎𝑥:

𝑝
(
𝑣 = 1|𝑢, 𝜃𝑛 (𝑣 = 1, 𝑢, 𝑥𝑛, 𝑦𝑛)

)
=

𝑝
(
𝑣 = 0|𝑢, 𝜃𝑛 (𝑣 = 0, 𝑢, 𝑥𝑛, 𝑦𝑛)

)
= 1

(B.8)

Thus (B.7) can be expressed as:∫ 1

0

1∑︁
𝑣=0

𝑝
(
𝑣 |𝑢, 𝜃𝑛

)
𝑑𝑢 = |𝑥𝑛 | + 2|𝑥𝑛 − 𝜃𝑛−1

𝑚𝑎𝑥 | + |1 − 𝜃𝑛−1
𝑚𝑎𝑥 | (B.9)

For 𝑦𝑛 = 𝛼: ∫ 1

0

1∑︁
𝑣=0

𝑝
(
𝑣 |𝑢, 𝜃𝑛

)
𝑑𝑢 =

∫ 𝜃𝑛−1
𝑚𝑖𝑛

0

∑︁
𝑣∈V

𝑝
(
𝑣 |𝑢, 𝜃𝑛

)
𝑑𝑢

+
∫ 𝑥𝑛

𝜃𝑛−1
𝑚𝑖𝑛

∑︁
𝑣∈V

𝑝
(
𝑣 |𝑢, 𝜃𝑛

)
𝑑𝑢 +

∫ 1

𝑥𝑛

∑︁
𝑣∈V

𝑝
(
𝑣 |𝑢, 𝜃𝑛

)
𝑑𝑢

(B.10)

Therefore, ∫ 1

0

1∑︁
𝑣=0

𝑝
(
𝑣 |𝑢, 𝜃𝑛

)
𝑑𝑢 = |𝜃𝑛−1

𝑚𝑖𝑛 |

+
∫ 𝑥𝑛

𝜃𝑛−1
𝑚𝑖𝑛

∑︁
𝑣∈V

𝑝
(
𝑣 |𝑢, 𝜃𝑛

)
𝑑𝑢 + |1 − 𝑥𝑛 |

(B.11)

Finally, ∫ 1

0

1∑︁
𝑣=0

𝑝
(
𝑣 |𝑢, 𝜃𝑛

)
𝑑𝑢 = |𝜃𝑛−1

𝑚𝑖𝑛 | + 2|𝜃𝑛−1
𝑚𝑖𝑛 − 𝑥𝑛 | + |1 − 𝑥𝑛 | (B.12)
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We wish to find 𝑥𝑛 which minimizes the following expression:

max
𝑦𝑛∈Y

∫
𝑢∈U

∑︁
𝑣∈V

𝑝
(
𝑣 |𝑢, 𝜃𝑛

)
𝑑𝑢 = max{𝑙0, 𝑙1}

(B.13)
where:

𝑙0 = |1 − 𝜃𝑛−1
𝑚𝑎𝑥 | + 2|𝑥𝑛 − 𝜃𝑛−1

𝑚𝑎𝑥 | + |𝑥𝑛 | = 1 + |𝑥𝑛 − 𝜃𝑛−1
𝑚𝑎𝑥 |

and
𝑙1 = |𝜃𝑛−1

𝑚𝑖𝑛 | + 2|𝜃𝑛−1
𝑚𝑖𝑛 − 𝑥𝑛 | + |1 − 𝑥𝑛 | = 1 + |𝜃𝑛−1

𝑚𝑖𝑛 − 𝑥𝑛 |
For (4.6) the score is averaged over all possible 𝑣 and 𝑢, then:

min
𝑥𝑛∈X

max
𝑦𝑛∈Y

∫
𝑢∈U

∑︁
𝑣∈V

𝑝
(
𝑣 |𝑢, 𝜃𝑛

)
𝑑𝑢

= min
𝑥𝑛∈X

max{|𝑥𝑛 − 𝜃𝑛−1
𝑚𝑎𝑥 |, |𝜃𝑛−1

𝑚𝑖𝑛 − 𝑥𝑛 |}
(B.14)

Therefore, the point 𝑥𝑛 which minimizes the maximal length is the mid point of the
interval

[
𝜃𝑛−1
𝑚𝑖𝑛
, 𝜃𝑛−1
𝑚𝑎𝑥

]
In a very similar way we can prove that IAL as defined in (4.7) behaves the same.

The greedy criterion defined in (4.7) can be written as:

𝐶𝑛|𝑛−1 = min
𝑥𝑛∈X

max
𝑦𝑛∈Y

∫
𝑥∈X

log
∑︁
𝑦∈Y

𝑝
(
𝑦 |𝑥, 𝜃𝑛

)
𝑑𝑥 (B.15)

where 𝑦, 𝑥 and 𝜃𝑛 are the test label,feature and maximum likelihood estimation
based on training and test data respectively:

𝜃𝑛 = arg max
𝜃∈Θ

𝑝 (𝑦𝑛, 𝑦 |𝑥𝑛, 𝑥, 𝜃) (B.16)

For the separable case, 𝑝 (𝑦𝑛, 𝑦 |𝑥𝑛, 𝑥, 𝜃), is basically a multiplication of indicator
functions resulting in a rectangle window around the correct barrier. There are multiple
solutions for the maximum likelihood estimator and we select the mid point of the
posterior’s support, which is uniformly distributed.

We can write the likelihood for 𝑧𝑛−1 as:

𝑝

(
𝑦𝑛−1 |𝑥𝑛−1, 𝜃

)
∝ 1

(
𝜃 ≥ 𝜃𝑛−1

𝑚𝑖𝑛

)
1

(
𝜃 < 𝜃𝑛−1

𝑚𝑎𝑥

)
(B.17)

where 𝜃𝑛−1
𝑚𝑖𝑛

and 𝜃𝑛−1
𝑚𝑎𝑥 represent the support of the posterior on 𝜃 given 𝑥𝑛−1, 𝑦𝑛−1.

Once a new feature point 𝑥𝑛 is selected (any point in the support of 𝑝
(
𝑦𝑛−1 |𝑥𝑛−1, 𝜃

)
),

then based on its label 𝑦𝑛 which can be arbitrary (we train for the worst), the likelihood
window function gets split again.

For 𝑦𝑛 = 1 − 𝛼:

𝑝 (𝑦𝑛 |𝑥𝑛, 𝜃) ∝ 1 (𝜃 ≥ 𝑥𝑛) 1
(
𝜃 < 𝜃𝑛−1

𝑚𝑎𝑥

)
(B.18)

For 𝑦𝑛 = 𝛼:
𝑝 (𝑦𝑛 |𝑥𝑛, 𝜃) ∝ 1

(
𝜃 ≥ 𝜃𝑛−1

𝑚𝑖𝑛

)
1 (𝜃 < 𝑥𝑛) (B.19)
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For the computation of (4.6), we are interested in the distribution 𝑝
(
𝑦 |𝑥, 𝜃𝑛

)
for

different test data points, 𝑥:
For 𝑦𝑛 = 1 − 𝛼:∫ 1

0
log

1∑︁
𝑦=0

𝑝
(
𝑦 |𝑥, 𝜃𝑛

)
𝑑𝑥 =

∫ 𝑥𝑛

0
log

∑︁
𝑦∈Y

𝑝
(
𝑦 |𝑥, 𝜃𝑛

)
𝑑𝑥

+
∫ 𝜃𝑛−1

𝑚𝑎𝑥

𝑥𝑛

log
∑︁
𝑦∈Y

𝑝
(
𝑦 |𝑥, 𝜃𝑛

)
𝑑𝑥 +

∫ 1

𝜃𝑛−1
𝑚𝑎𝑥

log
∑︁
𝑦∈Y

𝑝
(
𝑦 |𝑥, 𝜃𝑛

)
𝑑𝑥

(B.20)

For 𝑦𝑛 = 1 − 𝛼, if the test feature, 𝑥, satisfies 𝜃𝑛−1
𝑚𝑎𝑥 ≤ 𝑥 then 𝑝 (𝑦 = 1|𝑥, 𝜃) = 𝛼 and

if 𝑥𝑛 ≥ 𝑥, then 𝑝 (𝑦 = 1|𝑥, 𝜃) = 1 − 𝛼.
Therefore, ∫ 1

0
log

1∑︁
𝑦=0

𝑝
(
𝑦 |𝑥, 𝜃𝑛

)
𝑑𝑥 =

∫ 𝜃𝑛−1
𝑚𝑎𝑥

𝑥𝑛

log
∑︁
𝑦∈Y

𝑝
(
𝑦 |𝑥, 𝜃𝑛

)
𝑑𝑥 (B.21)

Now we observe that when 𝑥𝑛 ≤ 𝑥 ≤ 𝜃𝑛−1
𝑚𝑎𝑥:

𝑝
(
𝑦 = 1|𝑥, 𝜃𝑛 (𝑦 = 1, 𝑥, 𝑥𝑛, 𝑦𝑛)

)
= 𝑝

(
𝑦 = 0|𝑥, 𝜃𝑛 (𝑦 = 0, 𝑥, 𝑥𝑛, 𝑦𝑛)

)
= 1

(B.22)

Thus (B.21) can be expressed as:∫ 1

0
log

1∑︁
𝑦=0

𝑝
(
𝑦 |𝑥, 𝜃𝑛

)
𝑑𝑥 = |𝑥𝑛 − 𝜃𝑛−1

𝑚𝑎𝑥 | (B.23)

For 𝑦𝑛 = 𝛼:∫ 1

0
log

1∑︁
𝑦=0

𝑝
(
𝑦 |𝑥, 𝜃𝑛

)
𝑑𝑥 =

∫ 𝜃𝑛−1
𝑚𝑖𝑛

0
log

∑︁
𝑦∈Y

𝑝
(
𝑦 |𝑥, 𝜃𝑛

)
𝑑𝑥+∫ 𝑥𝑛

𝜃𝑛−1
𝑚𝑖𝑛

log
∑︁
𝑦∈Y

𝑝
(
𝑦 |𝑥, 𝜃𝑛

)
𝑑𝑥 +

∫ 1

𝑥𝑛

log
∑︁
𝑦∈Y

𝑝
(
𝑦 |𝑥, 𝜃𝑛

)
𝑑𝑥

(B.24)

Finally, ∫ 1

0
log

1∑︁
𝑦=0

𝑝
(
𝑦 |𝑥, 𝜃𝑛

)
𝑑𝑥 = |𝜃𝑛−1

𝑚𝑖𝑛 − 𝑥𝑛 | (B.25)

We wish to find 𝑥𝑛 which minimizes the following expression:

max
𝑦𝑖∈Y

∫
𝑥∈X

log
∑︁
𝑦∈Y

𝑝
(
𝑦 |𝑥, 𝜃𝑛

)
𝑑𝑥 = max{𝑙0, 𝑙1} (B.26)

where:
𝑙0 = |𝑥𝑛 − 𝜃𝑛−1

𝑚𝑎𝑥 |
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and
𝑙1 = |𝜃𝑛−1

𝑚𝑖𝑛 − 𝑥𝑛 |

For (4.6) the score is averaged over all possible 𝑦 and 𝑥, then:

min
𝑥𝑛∈X

max
𝑦𝑛∈Y

∫
𝑥∈X

log
∑︁
𝑦∈Y

𝑝
(
𝑦 |𝑥, 𝜃𝑛

)
𝑑𝑥 =

min
𝑥𝑛∈X

max{|𝑥𝑛 − 𝜃𝑛−1
𝑚𝑎𝑥 |, |𝜃𝑛−1

𝑚𝑖𝑛 − 𝑥𝑛 |}
(B.27)

Therefore, the point 𝑥𝑖 which minimizes the maximal length is the mid point of the
interval

[
𝜃𝑛−1
𝑚𝑖𝑛
, 𝜃𝑛−1
𝑚𝑎𝑥

]
□

B.2 Proof of Theorem 9
Proof. Based on [57], the recurring equation for the estimated model parameter, 𝜃, after
incorporating the n’th data point 𝑥𝑛

𝜃𝑛 = 𝜃𝑛−1 +
(
𝑋𝑇
𝑛−1𝑋𝑛−1 + 𝜆−1𝐼

)−1

1 + 𝑥𝑇𝑛
(
𝑋𝑇
𝑛−1𝑋𝑛−1 + 𝜆−1𝐼

)
𝑥𝑛

(
𝑦 − 𝑥𝑇𝑛 𝜃𝑛−1

)
(B.28)

where 𝜃𝑛−1 is the OLS estimator for 𝜃 given 𝑛 − 1 data points which are aggregated
in the matrix 𝑋𝑛−1.

After incorporating the test feature and label, [𝑥, 𝑦], one can write 𝜃 (which will be
used in IAL):

𝜃 = 𝜃𝑛 +
(
𝑋𝑇𝑛 𝑋𝑛 + 𝜆−1𝐼

)−1

1 + 𝑥𝑇
(
𝑋𝑇𝑛 𝑋𝑛 + 𝜆−1𝐼

)−1
𝑥

(
𝑦 − 𝑥𝑇𝜃𝑛

)
(B.29)

Therefore, the genie using 𝜃 can be expressed as:

𝑝
(
𝑦 |𝑥, 𝜃

)
=

1
√

2𝜋𝜎2
exp

(
− 1

2𝜎2

(
𝑦 − 𝑥𝑇𝜃

)2
)

(B.30)

The pNML normalization factor:

Γ =

∫
1

√
2𝜋𝜎2

exp
(
− 1

2𝜎2

(
𝑦 − 𝑥𝑇𝜃

)2
)
𝑑𝑦 (B.31)

We recall that 𝜃 is dependent on 𝑦 and that is why the above integral does not equal
to 1.

Plugging (B.29) in (B.31):

Γ =

∫
1

√
2𝜋𝜎2

exp
©«−

(
𝑦 − 𝑥𝑇𝜃𝑛

)2

2𝜎2
(
1 + 𝑥𝑇

(
𝑋𝑇𝑛 𝑋𝑛 + 𝜆−1𝐼

)−1
𝑥

) ª®®¬𝑑𝑦 (B.32)
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Recall IAL based on (4.5):

𝐶𝑛 = min
𝑥𝑛

max
𝑦𝑛
E𝑥

(∫
𝑝

(
𝑦 |𝑥, 𝜃

)
𝑑𝑦

)
(B.33)

Plugging (B.32) into (B.33):

𝐶𝑛 = min
𝑥𝑛

max
𝑦𝑛
E𝑥

(
1 + 𝑥𝑇

(
𝑋𝑇𝑛 𝑋𝑛 + 𝜆−1𝐼

)−1
𝑥

)
(B.34)

Since there is no dependence on 𝑦𝑛 and using the cyclic in-variance of the trace
operator:

𝐶𝑛 = min
𝑥𝑛

Tr
(
𝑋𝑋𝑇

(
𝑋𝑇𝑛 𝑋𝑛 + 𝜆−1𝐼

)−1
)

(B.35)

where 𝑋 is a matrix which is a concatenation of the test vectors 𝑥. □

B.3 Equivalence between EPIG and UAL
In this section we will prove that the criterion proposed by [68] is equivalent in some
sense to the criterion of [27].

Proof. Assuming some prior 𝜋 (𝜃), the UAL criterion is:

𝑥𝑖 = argmin
𝑥𝑖

𝐼 (𝜃;𝑌 |𝑋, 𝑥𝑖, 𝑌𝑖, 𝑧𝑛−1)

where 𝑋 and 𝑌 are the test feature and label random variables.
The EPIG criterion is:

𝑥𝑖 = argmax
𝑥𝑖

𝐼 (𝑌 ;𝑌𝑖 |𝑋, 𝑥𝑖, 𝑧𝑛−1)

Using the mutual information chain rule we can write:

𝐼 (𝑌 ;𝑌𝑖, 𝜃 |𝑋, 𝑥𝑖, 𝑧𝑛−1) = 𝐼 (𝑌 ;𝑌𝑖 |𝑋, 𝑥𝑖, 𝑧𝑛−1)+
𝐼 (𝑌 ; 𝜃 |𝑋,𝑌𝑖, 𝑥𝑖, 𝑧𝑛−1)

But we can also use the chain rule in a different way:

𝐼 (𝑌 ;𝑌𝑖, 𝜃 |𝑋, 𝑥𝑖, 𝑧𝑛−1) = 𝐼 (𝑌 ; 𝜃 |𝑋, 𝑥𝑖, 𝑧𝑛−1)+
𝐼 (𝑌 ;𝑌𝑖 |𝑋, 𝑥𝑖, 𝜃, 𝑧𝑛−1)

We note that
𝐼 (𝑌 ; 𝜃 |𝑋, 𝑥𝑖, 𝑧𝑛−1) = 𝐼 (𝑌 ; 𝜃 |𝑋, 𝑧𝑛−1)

since there is no dependence of 𝜃 or 𝑌 on 𝑥𝑖 without 𝑌𝑖. Also, 𝐼 (𝑌 ;𝑌𝑖 |𝑋, 𝑥𝑖, 𝜃, 𝑧𝑛−1) = 0,
since given 𝜃 the test and train are independent.

Therefore, 𝐼 (𝑌 ;𝑌𝑖, 𝜃 |𝑋, 𝑥𝑖, 𝑧𝑛−1) is not dependent on 𝑥𝑖 and if we try to find 𝑥𝑖 which
minimizes 𝐼 (𝜃;𝑌 |𝑋, 𝑥𝑖, 𝑌𝑖, 𝑧𝑛−1) (UAL), it will simultaneously maximize 𝐼 (𝑌 ;𝑌𝑖 |𝑋, 𝑥𝑖, 𝑧𝑛−1)
(EPIG).

□
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 ריצקת
 

 איה תירקיעה הרטמה .ןווכמו יביטקא ןפואב םירחבנ ןומיאה ינותנ הבש הדימל תמגידרפ איה הליעפ הדימל

 החנהה לע תוססובמ תוליבומ תויגטרטסא .תוגייותמה תומיגדה רפסמ רועזמ ידי לע לדומה יעוציב תא לעייל

 םישיגר םימושייב הרקמה תויהל לוכי אלש המ ,תוקידבה ךרעמ ומכ תוגלפתה התוא תא שי ןומיאה רגאמלש

 .םישמתשמ ינותנ גייתל ןתינ אל םהבש תויטרפל

 

 גוליפ יפל גלפתמ אטאדהו תויטסכוטסה תחנה תא םייקמ אטאדהש םיחינמ ונא ,רקחמה לש ןושארה קלחב

 הז ןוירטירק .תוריתי תלוביק טפשמ לע ססבתהב עצומ תיטרואית הליעפ הדימל לש שדח ןוירטירק .והשלכ

 .רבעב ועצוהש םייטסירויה םינוירטירק לילכמו הנוכת תריחבב לוצינ - רקח לש הרשפל יעבט ןפואב םרוג

 .םיצופנה תיביטקא הדימל לש םירחא םינוירטירקל תיריפמאו תיטילנא הוושומ שדחה ןוירטירקה

 

 םיעוציבה .ירטמיס-א תיוות שער םע תויראינילה תוירושימ-רפיה תורעשהה תקלחמ בשחנ ,ןכמ רחאל

 לע ססובמה הכומנ תובכרומ לעב ינשדח םתירוגלא תועצמאב חתונמ עצומה ןוירטירקה רובע הגשהל םינתינה

 ,תלבגומ הנוכת תוגלפתהו יללכ תיוות שער רובע יכ חכוה .בושמ םע תרושקתל תירוחאה המאתהה תמכס

 – לוביקה טפשמ לע ססבתהב .ספאל תילאיצננופסקא תוריהמב ךעוד עדימה לש שדחה יטרואיתה ןוירטירקה

 .ספאל תוריהמב תכעוד תוריתיה םג יכ קיסהל ןתינ זא םדוקה קלחהמ תוריתי

 

 ןומיאה ןיב יתורבתסה רשק החינמ הניאש ,תילאודיבידניאה החנהה תא םילקוש ונא ,רקחמה לש ינשה קלחב

 םינותנ תודוקנ גייתל רחובש ןוירטירק םיעיצמ ונא ,ילסרבינוא רוקמ דודיק ידי לע םיענומ .ןחבמה ינותנל

 היסרגרו יראניב גוויס רובע יכ חכוה .הקידבה ךרעמב תילמיסקמ-תילמינימה הטרחה תא תורעזממה

 תשיג גציימ ןכלו תיביטקא הדימל לש םיעודי םינוירטירק םע דחא הנקב הלוע לבקתמה ןוירטירקה ,תיראיניל

 םייתימא םינותנ תועצמאב חכוה ,ףוסבל .תויללכ תורעשה ירועיש רובע תדחואמ תיטרואית תיביטקא הדימל

 ונא ,ףוסבל .םגדמה תובכרומ תניחבמ תיביטקא הדימל לש םירחא םינוירטירק לע הלוע עצומה ןוירטירקהש

 ןוירטירקה לש תרעושמ הסרג תלחה ידי לע .)DNN( הקומע םיבצע תשר לש הרעשהה תקלחמ תא םיאור

 תא תיחפמ עצומה ןוירטירקה ,הצפהל ץוחמ םינותנ תוחכונבש םיארמ ונא ,תויבצע תותשר לע ונלש ישיאה

 MNIST-ו CIFAR10, EMNIST םינותנ יכרעמ רובע 12% -ו 15.4% ,10.4%   דעב שרדנה הכרדהה ךרעמ לדוג

 .המאתהב
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 רניילס-ןמדנז ש"ע םימדקתמ םיראתל רפסה תיב
 

 

 

 

  תיביטקא הנוכמ תדימלל תוינויצמרופניא תושיג
 

 

 

 "היפוסוליפל רוטקוד" ראותה תלבק םשל רוביח

 

 

 

 

 ץיבויש רחש
 

 

 

 

  ביבא-לת תטיסרבינוא לש טאנסל שגוה

 

 

 

 

 ד"פשת'ה ןוויס


