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ABSTRACT

Active learning is a form of machine learning which combines
supervised learning and feedback to minimize the training set
size, subject to low generalization errors. Since direct opti-
mization of the generalization error is difficult, many heuris-
tics have been developed which lack a firm theoretical foun-
dation. In this paper, a new information theoretic criterion is
proposed based on a minimax log-loss regret formulation of
the active learning problem. In the first part of this paper, a
Redundancy Capacity theorem for active learning is derived
along with an optimal learner. Building on this, a new active
learning criterion is proposed which naturally induces an ex-
ploration - exploitation trade-off in feature selection. In the
second part, the linear separator hypotheses class with addi-
tive label noise is considered and a low complexity algorithm
is proposed which optimizes the active learning criterion from
the first part. This greedy algorithm is based on the Posterior
Matching scheme for communication with feedback and is
shown that for BSC and BEC label noise, the proposed infor-
mation theoretic criterion decays at an exponential rate.

Index Terms— Active Learning, Linear Separator, Pos-
terior Matching

1. INTRODUCTION

In classical supervised learning, a training set (features and
labels) is provided and the learning algorithm, for example,
optimizes its model parameters to minimize the empirical er-
ror with the hope that it will also minimize the generalization
error. In this passive learning setting, the training set is ran-
domly selected from a pool of available examples. In order
to avoid large generalization errors, the training set is usually
very large and redundant, consequently generalization bounds
for passive learning decay slowly with the sample size.

In active learning, the learner has access to an unlabeled
data-set and sequentially chooses features to label based on
past observed examples. The problem is how to adaptively
choose these features? A lot of the work in this field has
dealt with proposing a heuristic for feature selection, analyz-
ing its performance and comparing to different lower bounds
[1]. One well studied approach is based on the disagreement

region introduced by Hanneke in [2]. This region contains all
the features for which at least two candidate learners do not
agree on. Thus, querying the label of such a feature may be
helpful to reduce the candidate pool. The general algorith-
mic framework of disagreement based active learning in the
presence of noise was introduced with the A2 algorithm by
Balcan in [3] and other related work in [4] and [5]. How-
ever, this approach has high computational complexity and is
not aggressive enough in feature selection, hence is far from
attaining the optimal sample complexity.

Another approach is margin based active learning which
has better sample and computational complexity than the dis-
agreement based approaches. The idea is to sample features
at carefully selected regions inside the disagreement region,
specifically near the edges of this region. This approach was
introduced by Balcan in [6] and followed up in [7] and [8].
While this approach has much better sample and computa-
tional complexity than the disagreement based methods, it
is not generic enough and only achieves the optimal sample
complexity for linear separators in a noiseless setting.

Several approaches consider information-theoretic crite-
ria for selecting the features such as Mutual Information [9],
Fisher Information [10] and Entropy [11]. These criteria are
typically ad-hoc and the aim is to provide the learning algo-
rithm with some "uncertainty" measure for feature selection.
The most common method is Maximum Uncertainty (MU),
where the feature which maximizes the label entropy is se-
lected under the assumption that it provides the most infor-
mative example. However, this scheme may be too aggres-
sive and lead to large generalization errors since high label
entropy may be due to noise and corrupt the learner.

In the first part of this work an information theoretic active
learning approach is proposed which unlike those in [9], [10]
and [11] optimizes the expected log-loss regret of a test sam-
ple. The resulting scheme generalizes the notion of maximum
uncertainty with adding the goal of effectiveness in making
the prediction. In the second part, the special case of the linear
separator model is considered and a greedy low complexity
scheme is shown to attain the desired criterion at an optimal
exponential rate.
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2. MINIMAX ACTIVE AND PASSIVE LEARNING
PROBLEM FORMULATION

In this section a minimax criterion for learning is presented
which applies to both active and passive learning. We con-
centrate on the stochastic setting which assumes a parametric
model between the features and the labels unknown to the
learner. Specifically, we assume that there is a parameteric
family of hypotheses p (y|x, θ) and the true distribution of
the data corresponds to a specific θ in the family. Our analy-
sis is using log-loss and probabilistic learners which assign a
probability to each possible label with a labeling budget of N
queries. The objective is to sequentially select features based
on past examples and construct a learner, q

(
y|x, xN , yN

)
,

which will perform as well as the best model in the hypothe-
ses class: p(y|x, θ), i.e. the oracle. A related analysis for
passive learning was provided in [12] but assumes i.i.d train-
ing samples.

Since the learner has no access to θ, we wish to minimize
the maximal expected log-loss regret of this learner. In this
sense, the optimal learner would perform as close as possible
to the oracle in the worst case. As a first step we write the
minimax log-loss regret after observing N samples:

R̂ = min
q

max
θ

E

{
log

(
p (y|x, θ)

q (y|x, xN , yN )

)}
(1)

where x, y, xN , yN and θ are the test feature and label, ob-
served features and labels and model parameter respectively.

We can equivalently optimize (1) with the distribution
π(θ):

R̂ = min
q

max
π(θ)

E

{
log

(
p (y|x, θ)

q (y|x, xN , yN )

)}
(2)

This is because π(θ) which puts all probability mass on the
worst case θ is a least favorable prior. The expectation is per-
formed over the joint probability p

(
y, x, θ, xN , yN

)
.

In active learning, the feature to be labeled, xt, is selected
via some selection policy, φ(xt|xt−1, yt−1) which is based
on the previous examples. This selection may be stochastic
which means that after observing the past examples there is a
probability for choosing a specific feature to be labeled.

The joint distribution p
(
y, x, θ, xN , yN

)
is expressed in

the following manner using Bayes formula where given θ, x,
y is independent of xN , yN .

p
(
y, x, θ, xN , yN

)
=p (y|θ, x) p

(
xN , yN |θ, x

)
·

· π(θ|x)p(x)
(3)

We can write the following conditional,

p
(
xN , yN |θ, x

)
= ΠN

t=1p (yt|xt, θ)φ
(
xt|xt−1, yt−1

)
(4)

Since there is no dependence on x in the RHS of (4), we
get,

p
(
xN , yN |θ, x

)
= p

(
xN , yN |θ

)
(5)

plugging (5) in to (3)

p
(
y, x, θ, xN , yN

)
= p (y|θ, x) ΠN

t=1p (yt|xt, θ) ·
·φ
(
xt|xt−1, yt−1

)
π(θ|x)p(x)

(6)

Applying (6) to (2),

R̂ = min
q

∑
xN ,yN ,x

φ
(
xt|xt−1, yt−1

)
p(x)·

· max
π(θ|x)

∑
θ

ΠN
t=1p (yt|xt, θ)π(θ|x)·

·DKL

(
p (y|x, θ) ||q

(
y|x, xN , yN

))
(7)

In passive learning, the
{
φ(xt|xt−1, yt−1)

}N
t=1

chooses
xt uniformly at random over the available features. How-
ever, in active learning we wish to optimize the examples
taken at each step t, so we would like to minimize (7) over{
φ(xt|xt−1, yt−1)

}N
t=1

. Therefore the final active learning
problem formulation can be stated as,

R = min
{φt}Nt=1

Ex

{
min
q

max
π(θ|x)

E

{
log

(
p (y|x, θ)

q (y|x, xN , yN )

)}
|x
}

(8)

3. OPTIMAL ACTIVE LEARNER

In this section, a capacity redundancy theorem is derived and
the optimal learner, based on (xN , yN ), is shown to be a mix-
ture over the hypotheses class. This capacity can then be used
as a criterion for active learning.

Theorem 3.1 (Redundancy-Capacity). The minimax active
learning problem defined in (8) is equivalent the conditional
model capacity,

R = min
{φ(xt|xt−1,yt−1)}Nt=1

max
π(θ)

I
(
Y ; θ|X,Y N , XN

)
(9)

The optimal learner is:

q∗
(
y|x, xN , yN

)
=
∑
θ

p
(
θ|yN , xN

)
p (y|θ, x) (10)

where π(θ|x) maximizes I
(
Y ; θ|X = x, Y N , XN

)
(capacity

achieving distribution) for each x.

Note that unlike commonly used heuristic methods for
active learning such as maximum uncertainty, the conditional
model capacity, maxπ(θ) I

(
Y ; θ|X,Y N , XN

)
, inherently

optimizes an exploration-exploitation trade-off due to the fact
that it maximizes the uncertainty in choosing the training
sample, while minimizing the uncertainty in predicting the
test sample.



Proof. First we find the best learner q, which optimizes (8)
for a given

{
φ(xt|xt−1, yt−1)

}N
t=1

. Note that q is optimal for
both passive and active learning. Using (5),

E

{
log

(
p (y|x, θ)

q (y|x, xN , yN )

)
|x
}

= ExN,yN|x (f(π(θ|x), q))

(11)

where

f(π(θ|x), q) =

=
∑
θ

p
(
θ|yN , xN , x

)
DKL

(
p (y|x, θ) ||q

(
y|x, xN , yN

))
(12)

Since f(π(θ|x), q) is convex in q
(
y|x, xN , yN

)
and con-

cave (linear) in π(θ|x) and the set of distributions is the prob-
ability simplex which is compact and convex, then we can
apply the minimax theorem [13]. Plugging (11) in to (8) and
using the minimax theorem,

R = min
{φt}Nt=1

Ex,xN,yN max
π(θ|x)

min
q

∑
θ

p
(
θ|yN , xN , x

)
·

·DKL

(
p (y|x, θ) ||q

(
y|x, xN , yN

))
(13)

The optimal q which minimizes the KL divergence is:

q∗
(
y|x, xN , yN

)
=
∑
θ

p
(
y, θ|x, yN , xN

)
(14)

Using (14),

E

{
log

(
p (y|x, θ)

q∗ (y|x, xN , yN )

)
|x
}

=

= ExN,yN|x
∑
y,θ

p
(
y|θ, x, xN , yN

)
p
(
θ|yN , xN , x

)
·

· log

(
p
(
y|x, θ, xN , yN

)
p (y|x, yN , xN )

) (15)

We can average over x and then the expected regret of
the optimal predictor given a fixed selection strategy and N
examples is the conditional mutual information between the
test label and model parameters:

E

{
log

(
p (y|x, θ)

q∗ (y|x, xN , yN )

)}
= I

(
Y ; θ|X,Y N , XN

)
(16)

with,

q∗
(
y|x, xN , yN

)
=
∑
θ

p
(
θ|yN , xN

)
p (y|θ, x) (17)

and π(θ|x) maximizes the mutual information (capacity
achieving distribution) for each x.

However, finding the optimal {φt}Nt=1 which minimize (9)
is dependent on the hypotheses class and can be difficult to
solve directly. In the following section we concentrate on the
linear separator model class and not try to solve (9) directly
but propose a novel algorithm which provides near optimal
performance for the proposed criterion. We will show that for
the linear separator, using a variation of MU can provide close
to optimal sample complexity.

4. ONE DIMENSIONAL LINEAR SEPARATOR WITH
ADDITIVE NOISE

In this section we discuss the one-dimensional linear separa-
tor model with additive label noise. This hypotheses class is
defined by two parameters, θ0 and p. The relation between
a feature x and a noisy label y is defined by first defining an
intermediate binary random variable v:

p(v|x, θ) =

{
1 if x > θ0

0 otherwise
(18)

Then y is the output of a binary channel whose input is v.
We address two such channels, binary symmetric (BSC) and
erasure (BEC) channels. In BSC, the channel models a case
where the true label v is flipped with some probability p,
while BEC models a case where the output cannot be labeled
(and outputs erasure/error) with some probability.

We prove that for this hypotheses class, the maximum
uncertainty policy is equivalent to the Posterior Matching
(PM) scheme presented in [14] (with appropriate input chan-
nel distribution) and show that the conditional entropy of the
test point decays exponentially with the number of examples.
Moreover, we provide the exponent for this decay which is
equivalent to the mutual information defined by the noisy
channel (W ) and the input distribution to the noisy channel
(Q) - I(Q,W ).

The maximum uncertainty is a greedy algorithm for se-
quentially selecting training examples. The algorithm selects
features based on greedy optimization of the instantaneous
conditional entropy of the classifier. This algorithm is de-
scribed in the following pseudo-code Algorithm 1.

Algorithm 1 Maximum Uncertainty
1: procedure MU
2: X0, Y 0 = empty sets
3: i = 1
4: while i ≤ n do
5: xi ← arg minηH(Yi|Xi = η,Xi−1, Y i−1).
6: yi ← Label(xi).
7: Xi ← [Xi−1, xi], Y

i ← [Y i−1, yi].
8: i = i+ 1



Lemma 4.1. The feature selected by maximum uncertainty
for one dimensional linear separators with BSC or BEC label
noise is the median of p(θ|Xi−1, Y i−1). That is,

η∗ = arg min
η
H(Yi|Xi = η,Xi−1, Y i−1) (19)

where η∗ = F−1θ|Xi−1,Y i−1

(
1
2

)
and Fθ|Xi−1,Y i−1 (θ) is a cu-

mulative distribution function.

Proof. For the BSC channel this result is very simple and due
to limited space we do not include it. For the BEC channel,
the entropy can be computed as,

H(Yi|Xi = η, xi−1, yi−1) =

= HB (p) + (1− p)HB(Fθ|xi−1,yi−1(η))
(20)

whereHB(·) denotes the binary entropy function. This means
that maximizing (20) is equivalent taking the posterior’s me-
dian.

In the following theorem the convergence of MU for one
dimensional linear separator with BSC or BEC is analyzed.
The conditional mutual information, I(θ;Y |X,Xn, Y n), re-
duces to the conditional entropy H(Y |X,xn, yn), since the
noise is additive, which means that H(Y |X, θ,Xn, Y n) =
HB(p).

Theorem 4.2. For the one dimensional linear separator
hypotheses class with BSC or BEC label noise and uniform
p(x), the MU algorithm produces a selection policy for which
the conditional entropy H(Y |X,xn, yn) converges to HB(p)
at an exponential rate 2−nI(Q;W ).

Proof. We define an auxiliary Bernoulli random variableQ ∼
Ber

(
1
2

)
and write the one dimensional linear separator’s out-

put for the selected feature η as,

vi = F−1Q

(
Fθ|Xi−1,Y i−1(θ0))

)
(21)

Using Lemma (4.1), our selection policy selects a point η
that once labeled is equivalent to performing PM. Since we
deal with an additive channel, we can use Lemma 2 in [14],

lim
n→∞

p(θ|xn, yn) = 2nI(Q;W ) (22)

for points θ which lie 2−nI(Q;W )±ε from θ0.
Note that the value on the RHS of (22) is independent of

θ0 and for any threshold this value will be the same and is
only dependent on the level of noise in the channel.

In order to analyze the asymptotic performance, we will
compute the conditional entropy,

H(Y |X,Xn, Y n) =

=

∫
HB

(∫
P (Y = 1|x, θ)p(θ|xn, yn)dθ

)
·

· p(xn, yn)p(x)dxdxndyn

(23)

For BSC, the binary entropy conditioned on a specific x,
can be written as,

H(Y |x, xn, yn) =

= HB

((
p(1− Fθ|xn,yn(x)) + (1− p)Fθ|xn,yn(x)

)) (24)

Therefore,

H(Y |X,xn, yn) =

∫ θ0−2−
nI(Q;W )

2

0

HB (p) p(x)dx+

+

∫ 1

θ0+2−
nI(Q;W )

2

HB (1− p) p(x)dx+

∫ θ0+2−
nI(Q;W )

2

θ0−2−
nI(Q;W )

2

HB

(
(
(
p(1− Fθ|xn,yn(x)) + (1− p)Fθ|xn,yn(x)

))
p(x)dx

(25)

which can be upper bounded by,

HB(p) ≤ H(Y |X,xn, yn) ≤ 2−nI(Q;W )+

+ (1− 2−nI(Q;W ))HB(p)
(26)

For the BEC case,

H(Y |X = x, xn, yn) = HB (p) + (1− p)HB(Fθ|xn,yn(x))
(27)

Therefore,

H(Y |X,xn, yn) ≤ HB(p) + 2−nI(Q;W )(1− p) (28)

This concludes the proof that active learning via PM con-
verges to HB(p) at rate 2−nI(Q;W ).

5. MULTIDIMENSIONAL LINEAR SEPARATOR
MODELS WITH ADDITIVE NOISE

In this section we will extend Theorem 4.2 to features em-
bedded in Rd. We will constrain our discussion to features
x ∈ Rd which satisfy ‖x‖ ≤ R with uniform p(x). The hy-
potheses class contains all possible homogeneous linear sep-
arators with normal vector w, partitioning the d-sphere to two
disjoint sets. The relation between feature x and noisy label y
is defined by introducing the auxiliary binary random variable
v,

p(v|x,w) =

{
1 if wTx > 0

0 otherwise
(29)

and y is the output of a binary channel (BSC or BEC) whose
input is v.

For convenience, we define the spherical coordinates of a
unit vector x ∈ Rd are defined as:

x =
[
cos(θ1), sin(θ1)cos(θ2), ...,Πd−1

i=1 sin(θi)
]

(30)



5.1. Successive Posterior Matching

In this section, we propose a label efficient low complexity
algorithm for learning a linear separator with noisy additive
labels for the criterion in (9). The basic idea is to successively
localize the spherical coordinates of the normal vector w us-
ing the PM scheme and then use a mixture learner over all the
normal vectors. We will prove that this algorithm, which we
denote as Successive Posterior Matching (SPM), can achieve
an exponential improvement over passive learning in sample
complexity.

The SPM is detailed in Algorithm 2 below where the es-
timations of the spherical coordinates of w are denoted as: θ̂.
In the initialization stage, each entry in θ̂ is set to π

2 and its
respective posterior is uniform. Next, at iteration i, SPM lo-
calizes the boundary, Ti, between two hyper-spaces by query-
ing points x with spherical coordinates fixed to the current
estimation θ̂ but coordinate θi is changed using PM to lo-
calize this boundary. After n label queries, the median of
p(Ti|xn, yn) is selected and π

2 is added to account for the fact
that we need the spherical coordinate, θi, of the normal vec-
tor. This process is repeated for the next angle θi−1. Note
that the number of labeling operations is nT = nd and the
computational complexity is polynomial.

Algorithm 2 Active Learning via Successive Posterior
Matching

1: procedure SPM
2: Init: θ̂ = [π2 ,

π
2 ,

π
2 , ...,

π
2 ],

3: Init: ∀i ∈ [1 : d− 1], p(θi|x0, y0) = Unif [0, π]
4: for i← d− 1 to 1 do
5: for k ← 1 to n do
6: θ̂i = F−1

Ti|xk−1,yk−1

(
1
2

)
7: xk = [Πd−1

l=1 sin(θ̂l), cos(θ̂d−1)Πd−2
l=1 sin(θ̂l)

, ..., cos(θ̂i)Π
i−1
l=1 sin(θ̂l), ..., cos(θ̂1)]

8: yk = Label(xk)
9: Update p(Ti|xk, yk)

10: θ̂i = θ̂i + π
2

Theorem 5.1. For the d dimensional homogeneous linear
separator with BSC or BEC label noise and uniform p(x),
the SPM algorithm produces a selection policy for which the
conditional entropy H(Y |X,xnT , ynT ) converges to HB(p)

at the exponential rate 2−
nT
d I(Q;W ).

Proof. We denote the set of point {x(i)}nk=1 as the points
selected at iteration i:

x(i)k = [Πd−1
j=i+1sin(θ̂j)sin(θi),

cos(θ̂d−1)Πd−2
j=i+1sin(θ̂j)sin(θi), ..., cos(θi), 0, 0, ..., 0]

(31)

These points belong to a plane defined by the previously esti-
mated coordinates θd−1i+1 and PM find the boundary of Ti in the

interval [0, π]. Therefore, after labeling n points, {x(i)}nk=1,
the posterior p(Ti|x(i)n, yn) ≈ 2nI(Q,W ), for points θ which
lie in an interval of size 2−nI(Q;W ).

Since we wish to estimate the normal vector w, we use
the fact that w must satisfy wTx = 0 for all point x which lie
near this boundary. Since all the points on the inspected plane
with high probability can lie on the boundary, then:

wTxk = Πi−1
j=1sin(φj)sin(θi(x(i)))sin(θi(w))γ+

+ Πi−1
j=1sin(φj)cos(θi(x(i)))cos(θi(w)) = 0

(32)

where γ is a recursive function based on the angles

θd−1i+1 (w) and θ̂
d−1
i+1 .

Equation (32) is a two-dimensional correlation between
two vectors where θi(x(i)) has a range of 2−nI(Q;W ). For
large enough n, γ is arbitrarily close to 1, thus
p(θi(w)|θd−1i+1 (w), xnT , ynT ) ≈ 2−nI(Q;W ).

Using the chain rule for probabilities,

p(θ(w)|xnT , ynT ) = Πd
i=1p(θi(w)|θd−1i+1 (w), xnT , ynT )

(33)

For the BSC case (BEC is very similar),

P (Y = 1|x, xnT , ynT ) =

= p

∫
1
(
xTw ≤ 0

)
Πd
i=1p(θi|θ

i−1, xni , y
n
i )dθ+

+ (1− p)
∫

1
(
xTw ≥ 0

)
Πd
i=1p(θi|θ

i−1, xni , y
n
i )dθ

(34)

Since each angle in the vector θ(w) is contained in
an interval which is equal to 2−nI(Q,W ), then whenever
the angle between x and all the unit vectors w defined
by θ(w) is greater than sin(2−nI(Q,W ))≈2−nI(Q,W ), then
H(Y |X,xnT , ynT ) = HB(p).

Therefore we can bound the conditional entropy,

H(Y |X,xnT , ynT ) ≤
∫
|〈x,ŵ〉|
|x| >2−nI(Q,W )

HB (p) p(x)dx+

+

∫
|〈x,ŵ〉|
|x| ≤2−nI(Q,W )

p(x)dx

(35)

where ŵ is the unit vector with spherical coordinates corre-
sponding to the median of each uncertainty interval.

Thus,

H(Y |X,xnT , ynT ) ≤ 2−
nT
d I(Q;W )+

+ (1− 2−
nT
d I(Q;W ))HB(p)

(36)

SPM was simulated for BEC and BSC with d = 3 for
two different p values. In Fig.1, it is shown that the decay
in error probability is exponential compared to the passive
bound. Moreover, it can be seen that the decay rate is close to
the capacities of the BEC and BSC channels.
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Fig. 1. SPM error probability for BEC (up) and BSC (down)

6. DISCUSSION

In this work a new information theoretic criterion for active
learning has been proposed. It relies on a Redundancy-
Capacity equivalence between the minimax log-loss regret
and the channel capacity between the model parameters and
the test label given the test feature and the training set. More-
over, an active learning algorithm has been proposed based on
the Posterior Matching scheme, which was shown to achieve
exponential improvement over passive learning for the family
of homogeneous linear separator over Rd with BSC or BEC
label noise, with decay factor equal to I(Q,W )

d .

7. REFERENCES

[1] R. M. Castro and R. D. Nowak, “Minimax bounds
for active learning,” IEEE Transactions on Information
Theory, vol. 54, no. 5, pp. 2339–2353, 2008.

[2] S. Hanneke, A bound on the label complexity of agnostic
active learning. Citeseer, 2007.

[3] M.-F. Balcan, A. Beygelzimer, and J. Langford, “Ag-
nostic active learning,” Journal of Computer and System
Sciences, vol. 75, no. 1, pp. 78–89, 2009.

[4] A. Beygelzimer, D. J. Hsu, J. Langford, and T. Zhang,
“Agnostic active learning without constraints,” in Ad-
vances in Neural Information Processing Systems, 2010,
pp. 199–207.

[5] S. Dasgupta, D. J. Hsu, and C. Monteleoni, “A general
agnostic active learning algorithm,” in Advances in neu-
ral information processing systems, 2008, pp. 353–360.

[6] M.-F. Balcan, A. Broder, and T. Zhang, “Margin based
active learning,” in International Conference on Compu-
tational Learning Theory. Springer, 2007, pp. 35–50.

[7] M.-F. Balcan and P. Long, “Active and passive learning
of linear separators under log-concave distributions,” in
Conference on Learning Theory, 2013, pp. 288–316.

[8] P. Awasthi, M. F. Balcan, and P. M. Long, “The power
of localization for efficiently learning linear separators
with noise,” in Proceedings of the forty-sixth annual
ACM symposium on Theory of computing. ACM, 2014,
pp. 449–458.

[9] N. Houlsby, F. Huszár, Z. Ghahramani, and M. Lengyel,
“Bayesian active learning for classification and prefer-
ence learning,” arXiv preprint arXiv:1112.5745, 2011.

[10] J. Sourati, M. Akcakaya, T. K. Leen, D. Erdogmus, and
J. G. Dy, “Asymptotic analysis of objectives based on
fisher information in active learning,” The Journal of
Machine Learning Research, vol. 18, no. 1, pp. 1123–
1163, 2017.

[11] Y. Guo and R. Greiner, “Optimistic active-learning us-
ing mutual information.” in IJCAI, vol. 7, 2007, pp.
823–829.

[12] Y. Fogel and M. Feder, “Universal batch learning with
log-loss,” in 2018 IEEE International Symposium on In-
formation Theory (ISIT). IEEE, 2018, pp. 21–25.

[13] J. v. Neumann, “Zur theorie der gesellschaftsspiele,”
Mathematische annalen, vol. 100, no. 1, pp. 295–320,
1928.

[14] O. Shayevitz and M. Feder, “Communication with feed-
back via posterior matching,” in 2007 IEEE Interna-
tional Symposium on Information Theory. IEEE, 2007,
pp. 391–395.


