Efficient Iterative Decoding of LDPC in the Presence of Strong Phase Noise

Shachar Shayovitz and Dan Raphaeli

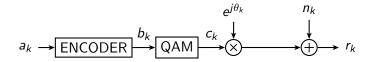
Tel Aviv University

The 7th International Symposium on Turbo Codes & Iterative Information Processing

Gothenburg, Sweden August 27, 2012

伺下 イヨト イヨト

System Model



Phase Noise Equivalent Baseband Channel

$$r_k = c_k e^{j\theta_k} + n_k, \quad n_k \sim \mathcal{CN}(0, \sigma^2)$$

$$\theta_k = \theta_{k-1} + \Delta_k, \quad \Delta_k \sim \mathcal{N}(0, \sigma_{\Delta}^2)$$

イロト イポト イヨト イヨト

Why is phase noise important?

Motivation

- Increase throughput in low end systems (low SNR)
- $ightarrow \Rightarrow$

Increase QAM constellation order

 $\bullet \Rightarrow$

Increased sensitivity to phase noise

<回と < 回と < 回と

What can we do?

Use the code!

- LDPC can work well in low SNR regions
- Perform iterative joint detection and estimation

Goal

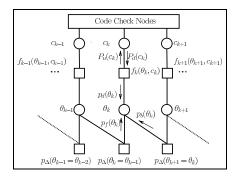
• Design a low complexity algorithm for providing LLRs to the LDPC decoder

・ 回 と ・ ヨ と ・ ヨ と …

Joint Detection & Estimation

The Factor Graph Approach,

$$p(\mathbf{c}, \boldsymbol{ heta} | \mathbf{r}) \propto p(\theta_0) \prod_{k=1}^{K-1} \underbrace{p(\theta_k | \theta_{k-1})}_{p_\Delta(\theta_k - \theta_{k-1})} \prod_{k=0}^{K-1} \underbrace{p(r_k | \theta_k, c_k)}_{f_k(c_k, \theta_k)} \mathbb{1}\{c_0^{K-1} \in \mathcal{C}\}$$



[From Barbieri, Colavolpe and Caire (2006)]

Shachar Shayovitz and Dan Raphaeli (TAU) Efficient Iterative Decoding of LDPC in Strong Phase Noise

Sum and Product Algorithm

SPA Messages

•
$$p_f(\theta_k) = \int_0^{2\pi} p_f(\theta_{k-1}) p_d(\theta_{k-1}) p_\Delta(\theta_k - \theta_{k-1}) d\theta_{k-1}$$

•
$$p_b(\theta_k) = \int_0^{2\pi} p_b(\theta_{k+1}) p_d(\theta_{k+1}) p_\Delta(\theta_{k+1} - \theta_k) d\theta_{k+1}$$

•
$$p_d(\theta_k) = \sum_{m=0}^{M-1} P_d(c_k = e^{j\frac{2\pi m}{M}}) f_k(c_k, \theta_k)$$

•
$$P_u(c_k) = \int_0^{2\pi} p_f(\theta_k) p_b(\theta_k) f_k(c_k, \theta_k) d\theta_k$$

Implementation problem - Phase messages are continuous!

・ 回 と ・ ヨ と ・ ヨ と

Sum and Product Algorithm

SPA Messages

•
$$p_f(\theta_k) = \int_0^{2\pi} p_f(\theta_{k-1}) p_d(\theta_{k-1}) p_\Delta(\theta_k - \theta_{k-1}) d\theta_{k-1}$$

•
$$p_b(\theta_k) = \int_0^{2\pi} p_b(\theta_{k+1}) p_d(\theta_{k+1}) p_\Delta(\theta_{k+1} - \theta_k) d\theta_{k+1}$$

•
$$p_d(\theta_k) = \sum_{m=0}^{M-1} P_d(c_k = e^{j\frac{2\pi m}{M}}) f_k(c_k, \theta_k)$$

•
$$P_u(c_k) = \int_0^{2\pi} p_f(\theta_k) p_b(\theta_k) f_k(c_k, \theta_k) d\theta_k$$

- Implementation problem Phase messages are continuous!
- One solution Quantize the phase and perform approximated SPA

(1日) (日) (日)

Sum and Product Algorithm

SPA Messages

•
$$p_f(\theta_k) = \int_0^{2\pi} p_f(\theta_{k-1}) p_d(\theta_{k-1}) p_{\Delta}(\theta_k - \theta_{k-1}) d\theta_{k-1}$$

• $p_b(\theta_k) = \int_0^{2\pi} p_b(\theta_{k+1}) p_d(\theta_{k+1}) p_\Delta(\theta_{k+1} - \theta_k) d\theta_{k+1}$

•
$$p_d(\theta_k) = \sum_{m=0}^{M-1} P_d(c_k = e^{j\frac{2\pi m}{M}}) f_k(c_k, \theta_k)$$

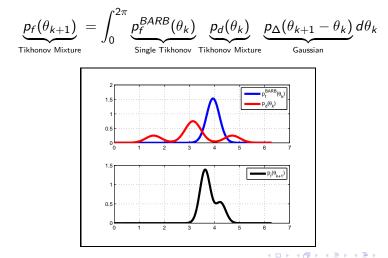
•
$$P_u(c_k) = \int_0^{2\pi} p_f(\theta_k) p_b(\theta_k) f_k(c_k, \theta_k) d\theta_k$$

- Implementation problem Phase messages are continuous!
- One solution Quantize the phase and perform approximated SPA
- Problem High accuracy requires high complexity

(ロ) (同) (E) (E) (E)

SPA Messages Approximation

Barbieri, Colavolpe and Caire (2006) - **Single Tikhonov** canonical model

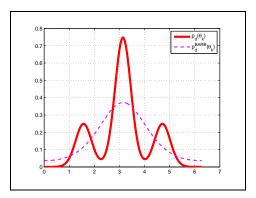


Shachar Shayovitz and Dan Raphaeli (TAU)

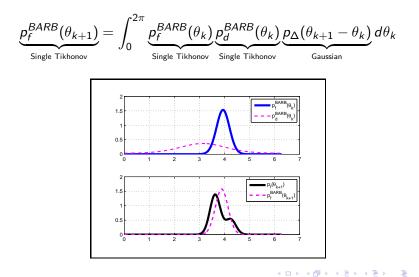
Efficient Iterative Decoding of LDPC in Strong Phase Noise

Approximating $p_d(\theta_k)$ as a Single Tikhonov

In order to approximate $p_f(\theta_k)$ as a single Tikhonov, Barbieri, et, al. suggested to approximate (Using Gaussian approximation) the $p_d(\theta_k)$ messages as a single Tikhonov - $p_d^{BARB}(\theta_k)$



Approximated Forward Recursion Equation



Shachar Shayovitz and Dan Raphaeli (TAU)

Efficient Iterative Decoding of LDPC in Strong Phase Noise

イロト イポト イヨト イヨト

Can we do better?

Shachar Shayovitz and Dan Raphaeli (TAU) Efficient Iterative Decoding of LDPC in Strong Phase Noise

▲□▶ ▲圖▶ ▲理▶ ▲理▶ -

æ

Yes!

Shachar Shayovitz and Dan Raphaeli (TAU) Efficient Iterative Decoding of LDPC in Strong Phase Noise

▲□→ ▲ 国 → ▲ 国 →

Approximating $p_f(\theta_{k+1})$ as a Single Tikhonov

Instead of approximating the mixture $p_d(\theta_k)$, we will approximate the mixture $p_f(\theta_{k+1})$,

$$p_{f}^{Mod.1}(\theta_{k+1}) = \underbrace{\int_{0}^{2\pi} p_{f}^{Mod.1}(\theta_{k}) p_{d}(\theta_{k}) p_{\Delta}(\theta_{k+1} - \theta_{k}) d\theta_{k}}_{Approximate}$$

Problem

- We can't use the Gaussian approximation here
- We need to find out how to optimally cluster a Tikhonov mixture to a single Tikhonov!

<回と < 回と < 回と

CMVM - Circular Mean and Variance Matching

Theorem (Shayovitz & Raphaeli 2012)

Given a circular distribution $f(\theta)$, the parameters of the Tikhonov distribution $g(\theta)$ which satisfy,

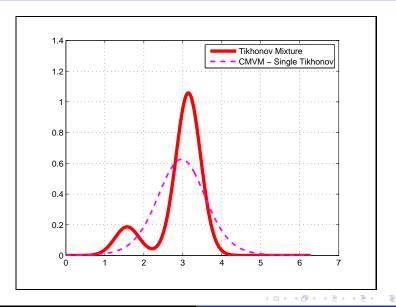
$$[\mu_{Circular}(g), \sigma^2_{Circular}(g)] = rgmin_{\mu,\sigma^2} \mathsf{KL}(f(\theta)||g(heta))$$

Are given by:

$$\mu_{Circular}(g) = \mu_{Circular}(f)$$

$$\sigma_{Circular}^2(g) = \sigma_{Circular}^2(f)$$

CMVM - Example

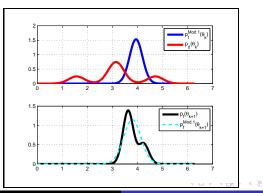


Shachar Shayovitz and Dan Raphaeli (TAU) Efficient Iterative Decoding of LDPC in Strong Phase Noise

Approximating $p_f(\theta_{k+1})$ as a Single Tikhonov Using CMVM

We will approximate the mixture $p_f(\theta_{k+1})$ using CMVM,

$$p_f^{Mod.1}(\theta_{k+1}) = \underbrace{\int_0^{2\pi} p_f^{Mod.1}(\theta_k) p_d(\theta_k) p_\Delta(\theta_{k+1} - \theta_k) d\theta_k}_{0}$$

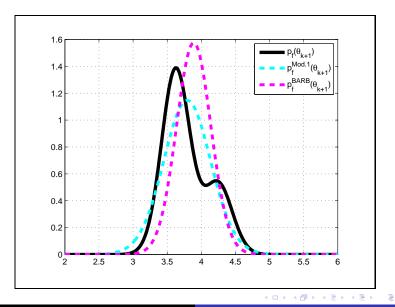


Approximate

Shachar Shayovitz and Dan Raphaeli (TAU)

Efficient Iterative Decoding of LDPC in Strong Phase Noise

Compare Approximations



Shachar Shayovitz and Dan Raphaeli (TAU)

Efficient Iterative Decoding of LDPC in Strong Phase Noise

伺下 イヨト イヨト

Canonical Model No.1's Drawback

Problem

- In the first code iteration, the phase messages might be multi modal
- Canonical model No.1 is a single Tikhonov (one mode!)
- We might converge on only one mode
- $\bullet \ \Rightarrow$

The estimation is vulnerable to cycle slips (phase ambiguities)

Canonical Model No.1's Drawback

Problem

- In the first code iteration, the phase messages might be multi modal
- Canonical model No.1 is a single Tikhonov (one mode!)
- We might converge on only one mode
- $\bullet \Rightarrow$

The estimation is vulnerable to cycle slips (phase ambiguities)

Idea

- Online approximation of probability of cycle slip event
- Once this probability is high, use **pilot symbols to recover** from cycle slips

(1日) (日) (日)

Approximating $p_f(\theta_k)$

We approximate the SPA messages using the following canonical model:

Model

$$p_f^{Mod.2}(\theta_k) = \alpha_k T_f(\theta_k) + (1 - \alpha_k) \frac{1}{2\pi}$$

- $T_f(\theta_k)$ is a single Tikhonov
- *α_k* approximates the probability that a cycle slip hasn't occurred

$$p_f^{Mod.2}(\theta_{k+1}) = ?$$

After insertion of canonical model no.2 to the forward recursion,

$$M(\theta_{k+1}) = \int_0^{2\pi} (\alpha_k T_f(\theta_k) + (1 - \alpha_k) \frac{1}{2\pi}) p_d(\theta_k) p_\Delta(\theta_{k+1} - \theta_k) d\theta_k$$

Question

How to compute $T_f(\theta_{k+1})$?

イロト イポト イヨト イヨト

$$p_f^{Mod.2}(\theta_{k+1}) = ?$$

After insertion of canonical model no.2 to the forward recursion,

$$M(\theta_{k+1}) = \int_0^{2\pi} (\alpha_k T_f(\theta_k) + (1 - \alpha_k) \frac{1}{2\pi}) p_d(\theta_k) p_\Delta(\theta_{k+1} - \theta_k) d\theta_k$$

Question

How to compute $T_f(\theta_{k+1})$?

Answer

 $\bullet \Rightarrow$

- Clustering all the modes \Rightarrow
 - Single mode approximation for multi modal messages
 - Convergence on a single mode \Rightarrow cycle slips
 - Cycle slips may be avoided by selecting **only** the most probable modes and cluster them

▲圖> ▲屋> ▲屋>

How to choose the modes?

Selection & Clustering Algorithm

```
Given the mixture M(\theta_{k+1}),
```

- Select the most probable mode
- Find all the other modes similar to it
- **3** $T_f(\theta_{k+1}) \leftarrow$ Cluster using CMVM all the selected modes
- $\alpha_{k+1} \leftarrow$ Sum up the modes' respective amplitudes

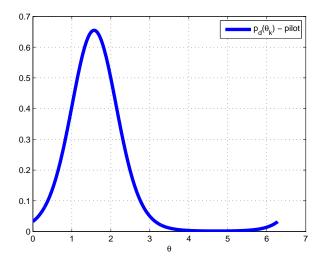
Intuition

This selection & clustering algorithm can be viewed as tracking a single phase trajectory while keeping a level of the likelihood of this trajectory.

▲ 御 ▶ → ミ ▶

< ∃⇒

The Forward Recursion when c_k is a Pilot

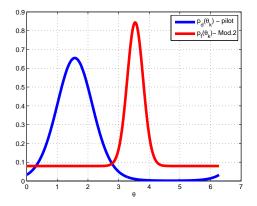


Shachar Shayovitz and Dan Raphaeli (TAU) Efficient Iterative Decoding of LDPC in Strong Phase Noise

<ロ> (日) (日) (日) (日) (日)

3

Canonical Model No.2

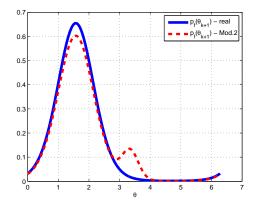


Shachar Shayovitz and Dan Raphaeli (TAU) Efficient Iterative Decoding of LDPC in Strong Phase Noise

 < ∃⇒

Before Selection & Clustering Algorithm

$$p_f(heta_{k+1}) = \int_0^{2\pi} p_f(heta_k) p_d(heta_k) p_\Delta(heta_{k+1} - heta_k) d heta_k$$



Introduction Canonical Models Algorithm Summary

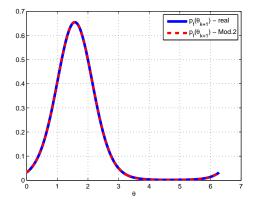
Algorithm Example Complexity Simulation Results

I → < ∃ →</p>

毫

-<- ⊒ →

After Selection & Clustering Algorithm - Cycle Slip Recovered!



★週 ▶ ★ 臣 ▶ ★ 臣 ▶ ...

Complexity

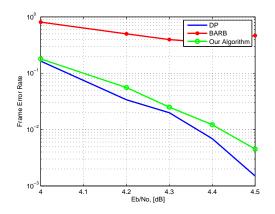
Computational load per code symbol per iteration for M-PSK constellation

Quantized Phase (DP)	BARB	Model No.2
13ML+10QL-9L-3M	17M+11	22M+2
3ML+2QL-3L-M	3M+3	4M+1
	13ML+10QL-9L-3M	13ML+10QL-9L-3M 17M+11

M is the constellation order, L is the number of quantization levels and Q is a parameter for the DP algorithm

Simulation Results

A length 4608 LDPC code with rate 0.889 BPSK, $\sigma_{\Delta} = 0.1$ [rads/symbol] and 1 pilot every 80 symbols The quantized algorithm (DP) used 8 quantization levels.



Summary

Summary

In this talk, we presented a new canonical model and tracking algorithm for **joint detection and estimation** of coded information in **strong phase noise** channels, with the following properties:

- Improved cycle slip robustness
- Low computational complexity
- Ability to work with high code rate & small number of pilots

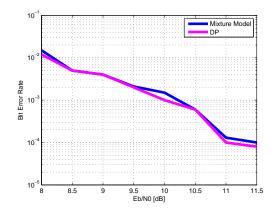
・同・ ・ヨ・ ・ヨ・

Introduction Canonical Models Algorithm Summary

Teaser - Tikhonov Mixture Canonical Model

First iteration messages may be multi modal \Rightarrow mixture based canonical model

Results for 8PSK and 0.05 rad per symbol



Shachar Shayovitz and Dan Raphaeli (TAU) Effici

Efficient Iterative Decoding of LDPC in Strong Phase Noise

-∢ ≣ ▶

・ロト ・回ト ・ヨト