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System Model

ak rENCODER QAM

e jθk nk

rk
bk ck

Phase Noise Equivalent Baseband Channel

rk = cke
jθk + nk , nk ∼ CN (0, σ2)

θk = θk−1 +∆k , ∆k ∼ N (0, σ2
∆)
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Why is phase noise important?

Motivation

Increase throughput in low end systems (low SNR)

⇒
Increase QAM constellation order

⇒
Increased sensitivity to phase noise
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What can we do?

Use the code!

LDPC can work well in low SNR regions

Perform iterative joint detection and estimation

Goal

Design a low complexity algorithm for providing LLRs to
the LDPC decoder
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Joint Detection & Estimation

The Factor Graph Approach,

p(c,θ|r) ∝ p(θ0)

K−1∏

k=1

p(θk |θk−1)
︸ ︷︷ ︸

p∆(θk−θk−1)

K−1∏

k=0

p(rk |θk , ck)
︸ ︷︷ ︸

fk(ck ,θk)

1{cK−1
0 ∈ C}

[From Barbieri, Colavolpe and Caire (2006)]
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Sum and Product Algorithm

SPA Messages

pf (θk) =
∫ 2π
0 pf (θk−1)pd (θk−1)p∆(θk − θk−1)dθk−1

pb(θk) =
∫ 2π
0 pb(θk+1)pd (θk+1)p∆(θk+1 − θk)dθk+1

pd (θk) =
∑M−1

m=0 Pd (ck = e j
2πm
M )fk(ck , θk)

Pu(ck) =
∫ 2π
0 pf (θk)pb(θk)fk(ck , θk)dθk

Implementation problem - Phase messages are continuous!
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Sum and Product Algorithm

SPA Messages

pf (θk) =
∫ 2π
0 pf (θk−1)pd (θk−1)p∆(θk − θk−1)dθk−1

pb(θk) =
∫ 2π
0 pb(θk+1)pd (θk+1)p∆(θk+1 − θk)dθk+1

pd (θk) =
∑M−1

m=0 Pd (ck = e j
2πm
M )fk(ck , θk)

Pu(ck) =
∫ 2π
0 pf (θk)pb(θk)fk(ck , θk)dθk

Implementation problem - Phase messages are continuous!

One solution - Quantize the phase and perform approximated
SPA
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Sum and Product Algorithm

SPA Messages

pf (θk) =
∫ 2π
0 pf (θk−1)pd (θk−1)p∆(θk − θk−1)dθk−1

pb(θk) =
∫ 2π
0 pb(θk+1)pd (θk+1)p∆(θk+1 − θk)dθk+1

pd (θk) =
∑M−1

m=0 Pd (ck = e j
2πm
M )fk(ck , θk)

Pu(ck) =
∫ 2π
0 pf (θk)pb(θk)fk(ck , θk)dθk

Implementation problem - Phase messages are continuous!

One solution - Quantize the phase and perform approximated
SPA

Problem - High accuracy requires high complexity
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Canonical Model - Intro

SPA messages are approximated using a family of distributions
(finite parameters)

Much lower computational complexity than quantization

Barbieri, Colavolpe and Caire (2006) used a Single
Tikhonov distribution for all SPA messages

Shayovitz and Raphaeli (2012) used a modified Tikhonov
distribution only for forward and backward messages
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Canonical Model - Intro

SPA messages are approximated using a family of distributions
(finite parameters)

Much lower computational complexity than quantization

Barbieri, Colavolpe and Caire (2006) used a single
Tikhonov distribution for all SPA messages

Shayovitz and Raphaeli (2012) used a modified Tikhonov
distribution only for forward and backward messages

Problem

Single Tikhonov canonical models are not suitable for the first
iteration in strong phase noise.
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Canonical Model - Tikhonov Mixture

pf (θk) =

Nf∑

i=1

αf
i

eRe[Z
f
i e

−jθk ]

2πI0(|Z f
i |)
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Problem

Mixture order grows exponentially!

pf (θk+1)
︸ ︷︷ ︸

Tikhonov Mixture

=

∫ 2π

0
pf (θk)
︸ ︷︷ ︸

Tikhonov Mixture

pd (θk)
︸ ︷︷ ︸

Tikhonov Mixture

p∆(θk+1 − θk)
︸ ︷︷ ︸

Gaussian

dθk
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Problem Formulation

Mixture Reduction

Given a Tikhonov mixture,

f (θ) =

N∑

i=1

αi tfi (θ)

Find a Tikhonov mixture with M < N

g(θ) =
M∑

j=1

βj tgj (θ)

Which minimizes some distortion criterion,

D(f (θ)||g(θ))
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Problem Formulation

Kullback Leibler divergence is more natural for this setting
than Integral square error (ISE)

Optimal mixture reduction is NP hard

Known mixture reduction algorithms such as: Salmond
(1990),Williams & Maybeck (2003) and Runnalls (2006) don’t
work well

Why do those algorithms fail?

Fixed mixture order and clustering errors limit the performance:

Small order will undergo cycle slips and create error floor

Large order is too computationally demanding
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New Problem Formulation - Dynamic Mixture Order

Objective

Given a Tikhonov mixture,

f (θ) =

N∑

i=1

αi tfi (θ)

Find the Tikhonov mixture g(θ) with the minimum number of
components

g(θ) =
M∑

j=1

βj tgj (θ)

which satisfy,
DKL(f (θ)||g(θ)) ≤ µ
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Mixture Reduction Algorithm

Suppose we need to reduce the dimensions of the following
message pf (θk+1)

0 1 2 3 4 5 6 7
0

0.005

0.01

0.015

θ

 

 
pd(θ

k
)

pf(θ
k
)

0 1 2 3 4 5 6 7
0

0.002

0.004

0.006

0.008

0.01

 

 
pf(θ

k+1
) Components

Shachar Shayovitz and Dan Raphaeli (TAU) Multiple Hypotheses Iterative Decoding



Introduction Algorithm Summary Algorithm Simulation Results

Mixture Reduction Algorithm

Choose the most probable mixture component and name it
flead (θk+1),
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Mixture Reduction Algorithm

Find all other mixture components fi(θk+1) for which
DKL(fi (θk+1)||flead (θk+1)) ≤ µ,
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CMVM - Circular Mean and Variance Matching

Theorem (Shayovitz & Raphaeli 2012)

Given a circular distribution f (θ), the parameters of the Tikhonov

distribution g(θ) which satisfy,

[µCircular (g), σ
2
Circular (g)] = argmin

µ,σ2

DKL(f (θ)||g(θ))

Are given by:

µCircular (g) = µCircular (f )

σ2
Circular (g) = σ2

Circular (f )
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Mixture Reduction Algorithm

Cluster all the chosen mixture components using CMVM and get
the first reduced mixture component g1(θk+1).
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Mixture Reduction Algorithm

Eliminate the clustered components and iterate until there are no
original mixture components left...
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Algorithm Summary

Low complexity

For small µ, this algorithm guarantees that
DKL(pf (θk+1)||g(θk+1)) ≤ µ

Resulting average number of mixture components per
symbol is low and decreases significantly with the LDPC
iterations

Very low probability of cycle slip
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Simulation Results

LDPC length 4608 with rate 0.75

QPSK, σ∆ = 0.1[rads/symbol] and 1 pilot every 60 symbols

The quantized algorithm (DP) used 8 quantization levels.
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Average Mixture Order

We look at the average number of hypotheses per symbol as a
measure of the complexity per iteration
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Complexity

Computational load per code symbol per iteration for QPSK
constellation

DP Multi Hyp, iter 1 Multi Hyp, iter 2

Operations 2324 403 115

LUT 476 133 45

M is the constellation order, L is the number of quantization levels
and Q is a parameter for the DP algorithm
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Summary

In this talk, we presented a new approach for joint detection
and estimation of coded information in strong phase noise
channels. We have presented a canonical model and mixture
reduction algorithm with the following properties:

Comparable PER to DP

Low computational complexity

Ability to work well with high code rate

Ability to work well with small number of pilots or even
without any pilots!

Very low probability of cycle slip!
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Backup - Mixture reduction algorithm

j ← 1
while j ≤ L or |f (θ)| > 0 do

lead ← argmaxk{αk}
idx ← lead

for i = 1→ |f (θ)| do
if DKL(fi (θ)||flead (θ)) ≤ µ then

idx ← [idx , i ]
end if

end for
gj (θ)← CMVM(α(idx), f (idx))
βj ←

∑
α(idx)

f (θ)← f (θ)−
∑

i∈idx α(i)fi (θ)
Normalize f (θ)
j ← j + 1

end while

Shachar Shayovitz and Dan Raphaeli (TAU) Multiple Hypotheses Iterative Decoding


	Introduction
	System Model
	Sum & Product Algorithm
	Canonical Model

	Algorithm
	Algorithm
	Simulation Results

	Summary

