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Active Learning

Unlabelled Dataset

Sequential Process!
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Main Obijective

How to choose examples
interactively in order to learn
faster than passive learning?
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Active Learning Criteria

@ Maximum Uncertainty (MU)
@ Xp = argmaxy, H (yn|X”,y”‘1).
@ Sensitive to noise.
@ Bayesian Active Learning by Disagreement (BALD) [Houlsby,
et al 2011]
® X, = arg maxy, /(9; yn|X”,y”_1).
e Heuristic criteria.
@ Universal Active Learning (UAL) [Shayovitz & Feder 2021]
@ X, =argminyg 1(6; y|x,x", y").
o Derived using the Capacity - Redundancy Theorem.
e Takes into account the un-labelled test set.
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@ Sensitive to noise.
@ Bayesian Active Learning by Disagreement (BALD) [Houlsby,
et al 2011]
® X, = arg maxy, /(9; yn|X”,y”_1).
e Heuristic criteria.
@ Universal Active Learning (UAL) [Shayovitz & Feder 2021]
@ X, =argminyg 1(6; y|x,x", y").
o Derived using the Capacity - Redundancy Theorem.
e Takes into account the un-labelled test set.

Data assumed to follow some parametric distribution
Cannot validate for real world data!
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Learning in Individual Setting

Assumptions

@ No underlying parametric distribution.
@ Training pool: zV = (xN, yV)

@ Test pair: (x,y)

@ x can be accessed.
@ yis not available.

@ Probabilistic learners: g (y|x).

@ Log-loss cost function: — log (q(-|x, zN)).
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Learning in Individual Setting

Assumptions

@ No underlying parametric distribution.
@ Training pool: zV = (xN, yV)

@ Test pair: (x,y)

@ x can be accessed.
@ yis not available.

@ Probabilistic learners: g (y|x).

@ Log-loss cost function: — log (q(-|x, zN)).

Fundamental Problem

Minimizing the log-loss in the individual setting is ill-posed.
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Learning in Individual Setting

Define a hypothesis class:

Pe ={p(ylx.0)|0 € ©}

Define the learning problem:

T
R(x;z") = min r}1€zl§<|og FIOER)

where:
6 = argmax [log p (. y"|x. x".6) + log (w ()]

and
p (Y|X, QA) € Po

15/35



Learning in Individual Setting
[efe] ]

Predictive Normalized Maximum Likelihood (pNML) /

Stochastic Complexity

Theorem (Fogel and Feder 2018)

The universal learner, Qpnm, minimizes R (x; 2™):

Gonm(y1x, 2") = M
%y p (vix.d)
R (x;z") = log Z p (y|x, é)
yeYy

The pNML regret is exactly the stochastic complexity of Pg.
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Active Learning in Individual Setting

What is a "good" training set, z"?
Small R(x; z™") on many test features x

@ Optimizing over z" is not possible!
@ Find training features x" which minimize the worst case labels y":
e Average mini-max regret:

= min maxZF?XZ

xnexXn yneyn

e Worst mini-max regret:

C,'{V: min max max R (x; 2"
xneXn yneyn x
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Active Learning in Individual Setting

Using Fogel and Feder 2018:

Individual Active Learning (IAL)

Cp = min, max, 37 37 p (vixd (x.y.2")

X yeY

C" = min max mapr(y|X,§(X,y,Z”))

nexn ynegyn x
XNeXn yney yeY
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Active Learning in Individual Setting

@ In the next slides we examine IAL for different hypothesis classes:

@ One dimensional Barrier
e Linear Regression
e Gaussian Process Classification

@ It will be shown that IAL coincides with known class specific criteria
and thus is a unified framework for active learning!
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One Dimensional Barrier - Separable Data

The 1-dimensional barrier hypotheses class, Peg, is defined as:
ply =11x,0) = 1(6 < X)

where the input x € [0,1], output y € {0,1} and the unknown
barrier 9 € [0,1].
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One Dimensional Barrier - Separable Data

The 1-dimensional barrier hypotheses class, Peg, is defined as:
ply =11x,0) = 1(6 < X)

where the input x € [0,1], output y € {0,1} and the unknown
barrier 9 € [0,1].

Theorem (Shayovitz & Feder 2022)

For one dimensional separable data, greedy IAL induces a

selection policy which coincides with binary search and thus
optimal.

20/35



Active Learning in Individual Setting
0000e000000000000

Proof Outline

@ |AL can be written as:
A . An
= %

Chos = pinmes 3, [ p (")
where 6" is the maximum likelihood estimation based on
training and test data:

én — n n ’9
argrgggp(y VX" u,6)
@ Likelihood for z"1:
p (yn—1 |Xn—1’9) o 1 (9 > eg;,‘,) 1 (9 < 9;;})

where 8,’7’7‘,,1 and 07| represent the support of the posterior
on @ given x™ 1,y
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Proof Outline

@ Select feature point, x,, which can be any point in the
support of p (y”‘1 |x”‘1,9).
@ Fory,=0:

Py Ix".6) < 1(8 > xo) 1 (9 < 9%;})
@ Fory,=1:
min

p(y"1x"0) o 1 (02 07,1} 1(6 < xo)
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Proof Outline

@ |AL can be simplified to:

maxy,ev [, (]l (9321 < u) +1-1 (é'.}:o < u)) du = max{lp, 1}

where

-1 1
lo =11 = Omax| + 2|Xn — O] + | Xnl

and
o= 1071 + 21071 — x| + [1 = Xy

min min
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Proof Outline

We note that:

_ n-1
/0 = 1 + |Xn - gmax

and

-1
h=1+167" — Xl

Therefore,
nln-1 — min

CA . = min max{|x, — 671 1,16"1 — x,|}
XpeX

The point x, which minimizes the maximal length is the mid

point of the interval [67-1, 671 |
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Linear Regression

The linear regression hypothesis class:

y=Xo0+z

where:

@ X € R™P is a design matrix of n feature vectors.
@ y € R" is the vector of observable responses.

ez~N (O,O'ZI[]H).

The error covariance of the OLS solution is:

s = o2 ()(Tx)_1
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Experimental Design

@ The design problem reduces to find a design matrix X which
-1
"minimizes" the covariance matrix ! = (XTX) .

@ Extensive research over the last decade under the
mathematical field of "Optimal Experimental Design":
[Pukelsheim 2006]

e A Optimal Design: 4 (Z) = })Tr (2‘1)

D Optimal Design: fp (2) = det(|2|)‘f1?
G Optimal Design: f5 () = maxy diag (xz—1xT)

V Optimal Design: fy (2) = Tr (XZ‘1XT)
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IAL for Linear Regression

Theorem (Shayovitz & Feder 2022)
For linear regression, IAL becomes:

X

-1
CA = minTr (x (anxn + /ll) XT)

-1
Ch/ = min max diag (x (an X + /l/) XT)
Xﬂ

where X is a matrix which is a concatenation of the test vectors
Xx and A is a regularization factor.
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Observations

@ |AL coincides with G and V optimal designs:

@ Note that IAL is a function of the training features x" only and
have no dependence on their respective labels y”.

@ Therefore, no need for online feedback and the training set
selection can be cast as a subset selection problem
performed offline.

@ This problem is NP hard and approximate solutions are
needed.
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Gaussian Process Classification

Gaussian Process Classification (GPC) is a powerful,
non-parametric kernel-based model.

yIx,f ~ Bernoulli (® (fy))

@ fis afunction of a feature point x and is assigned a Gaussian
process prior with mean u(-) and covariance function k(- -).

@ The label y is Bernoulli distributed with probability ®(f),
where @ is the Gaussian CDF.
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Variational Inference

@ Given a training set, the posterior over f becomes
non-Gaussian and complicated.

@ Approximate inference is used to model the posterior
distribution.

The MAP estimators f,, and f, are computed based on:
Ii){,:’ If\L\j/ = arg ;narxp(vlfu)p (ynlfxn) q (an’ fUlyn_1’Xn_1)

where
q (fxn, fu|y”‘1,x”‘1) is a Gaussian distribution.
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Data Set

@ USPS hand-written digits data set.

@ Total of 9298 handwritten single digits between 0 and 9.

@ Each image consists of 16 x 16 pixels.

@ Half of 9298 digits are designated as training and the other
half are as test.

@ Pixel values are normalized to be in th

=3

range of [-1, 1].
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Empirical Comparison

@ Binary classification task: the digit 0 vs {2,4,7,8}.
@ PCA is computed using the un-labeled training data.

@ After centering and PCA, the 5 largest Eigenvalues of the
PCA are used as the feature space for classification.

@ A small random subset of the unlabeled test set is given to
the learner (15 random samples) along with an initial labelled
training set (3 random examples).

@ |AL is compared to UAL, BALD, MU and passive learning.
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Empirical Results
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Summary

@ Presented a novel AL criterion:
o |AL takes into account the un-labelled test set.
o |AL is not constrained by the assumption that the data is
generated by some class of distributions.
@ |AL can be viewed as a unified framework for active learning
in a variety of hypothesis classes:
e For binary classification, this criterion coincides with binary
search
e For linear regression, this criterion coincides with G and V
optimal designs.

@ In empirical comparison with state of the art AL criteria, IAL
proved to be superior in terms of sample complexity.
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Thank You!
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