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Abstract—Modern machine learning systems require massive
amounts of labeled training data in order to achieve high
accuracy rates. Active learning uses feedback to label the most
informative data points and significantly reduces the labeling
effort. Many heuristics for selecting data points have been
developed in recent years which are usually tailored to a specific
task and a general unified framework is lacking.

In this work, the individual data setting is considered and
an active learning criterion is proposed. In this setting the
features and labels, both in the training and the test, are specific
individual, deterministic quantities. Motivated by connections
between source coding and minimax learning, the proposed
criterion attempts to find data points which minimize the average
Predictive Normalized Maximum Likelihood (pNML) on the
unlabeled test set. It is shown using a real data set that the
proposed criterion performs better than other active learning
criteria.

I. INTRODUCTION

In supervised learning, a training set is provided to the
learner which optimizes its model parameters to minimize the
empirical error on that training set with the hope that this
will imply a low test set error. The training set is randomly
drawn from a pool of available examples and an expert labels
them prior to training. This process is considered passive
learning since the learner is passive in the data collection
and labelling tasks. Many machine learning applications today
rely heavily on the assumption that humans can annotate all
the available data for training. However, the massive amounts
of data available today make it an impossible task. The time
and financial cost associated with labeling is high, especially
when very large training sets are needed. Consequently, only
a small random sub-set is labeled which may not represent the
true underlying model between features and labels. To avoid
this, the training set is redundant and usually much larger than
required. Consequently, passive learning requires much more
data than needed to attain a vanishing test error probability.

In active learning, the learner has access to a large set of
unlabeled examples and can interact with a labelling expert.
The learner sequentially chooses which data point he wishes
the expert to label based on previously observed examples.
This feedback loop has the potential to significantly reduce
the number of examples needed to achieve a given accuracy
level. The fundamental problem is how to choose which data
points to be labeled?

In the last decade there has been significant progress in ac-
tive learning research. Most contributions deal with proposing
a heuristic for feature selection, analyzing its performance and
comparing to different lower bounds [1], [2] and [3]. Some of
the algorithms and heuristics which have been proposed for
active learning include: [4], [5], [6], [1], [7], [8], [9] and [10].

Several approaches consider information-theoretic active
learning criteria [11], [12], [13] and [14]. The most common
method is Maximum Uncertainty (MU) sampling, where the
feature with the highest label predictive entropy given the
training is selected. In some sense this approach is very
similar to the margin based approach in [15]. However, this
aggressive, essentially greedy, scheme may lead to large gen-
eralization errors since noise might produce high predictive
entropy and corrupt the training set.

In [13], a criterion called Bayesian Active Learning by
Disagreement (BALD), is proposed which maximizes the
mutual information between the model parameters θ and the
data point to be selected, x̂t , given the available training:
x̂t = argmaxxt

I(θ; yt |xt, yt−1). The idea is to reduce the num-
ber of possible hypotheses maximally fast, i.e. to minimize the
uncertainty about model parameters using Shannon’s entropy.
This criterion also appears as an upper bound on information
based complexity of stochastic optimization in [16] and also
for experimental design in [17] and [18]. This approach was
empirically investigated in [19], where a Bayesian method
to perform deep learning was proposed and several heuristic
active learning acquisition functions were explored within this
framework.

Another approach to optimize the training set is by tak-
ing into account the un-labelled test set. Since the trained
model will be tested using the test set, one should select
training points which have the most relevance to the test
set. Essentially, there is no real need to learn the labeling
function over the whole feature space which may be very
complex and requires many data points. In practice, a pre-
processing stage prunes the training set from data points which
are irrelevant to the test, but this requires domain knowledge
regarding the similarity between training and test sets. Criteria
such as BALD and MU do not to take into account the un-
labelled test set and select data points based solely on the
training pool. In [14], a criterion denoted as Universal Active
Learning (UAL) was derived based on universal source coding



and minimax regret minimization. UAL utilizes the unlabeled
test set in order to learn data points which are most relevant
to the test set. It was shown in [14] that UAL is related to
BLAD and MU and is basically a generalization of the two.
In [20], UAL is also proposed using heuristic reasoning and
denoted as Expected Predictive Information Gain (EPIG).

However, UAL assumes that the data is generated according
to a distribution which belongs to a given hypothesis class.
This assumption cannot be verified on real world data thus
limiting the application of UAL. In this work, the problem
of active learning in the individual data setting is considered.
This is the most general data setting, in which the data is not
assumed to originate from any distribution but an arbitrary
/ individual set of features and labels. In the next sections
we will introduce the criterion and analyze it for binary
classification.

Throughout this paper, the following notation for a sequence
of samples will be used xt = (x1, x2, ..., xt ). The variables
x ∈ X and y ∈ Y will represent the features and labels
respectively with X and Y being the sets containing the
alphabets of features and labels respectively.

II. INDIVIDUAL DATA SETTING

In supervised machine learning, a training set consisting of
N pairs of examples is provided to the learner:

zN = {(xn, yn)}Nn=1 (1)

where xn is the n-th data instance and yn is its corresponding
label. The goal of a learner is to predict an unknown test label
y given its test data, x, by assigning a probability distribution
q

(
·|x, zN

)
for each training zN .

We consider the individual setting proposed in [21] and
[22]. In this setting we assume that there is no conditional
distribution relating a feature x to a label y, but the sequence
zt = {xt, yt } is an individual sequence. Unlike the stochastic
setting [22] in which the data follows a distribution f (y |x),
which is assumed to be part of some parametric family of
hypotheses.

In order to have a well posed problem, the learning objective
is to compete with a reference learner, a genie from a known
hypothesis class, PΘ and perform as well as it does on the test
set, using the same training data, zn.

Denote Θ as a general index set, this class is a set of
conditional probability distributions

PΘ = {p (y |x, θ) |θ ∈ Θ} (2)

In addition, it is assumed that the reference learner knows
the test label value y but is restricted to use a model from the
given hypothesis set PΘ. This reference learner then chooses
a model, θ̂, that attains the minimum loss over the training set
and the test sample:

θ̂ = arg max
θ∈Θ

[
log p (y |x, θ) +

N∑
n=1

log p (yn |xn, θ) + log (w (θ))

]
(3)

where performance is evaluated using the logloss function, i.e.
− log

(
q

(
·|x, zN

) )
.

Note that in this work we extended the individual setting
of [21] and allowed the usage of some prior w(θ) over
the parameter space which may be useful for regularization
purposes.

The learning problem is defined as the log-loss difference
between a learner q and the reference learner (genie):

Rn (q, y; x) = log
©­­«

p
(
y |x, θ̂

)
q (y |x, zn)

ª®®¬ (4)

An important result for this setting is provided in [23] and
provides a closed form expression for the minimax regret along
with the optimal learner, qpNML:

Theorem 1 (Fogel and Feder (2018)). The universal learner,
denoted as the pNML, minimizes the worst case regret:

Rn = min
q

max
y∈Y

log
©­­«

p
(
y |x, θ̂

)
q (y |x, zn)

ª®®¬
The pNML probability assignment and regret are:

qpNML(y |x, zN ) =
p
(
y |x, θ̂

)
∑

y p
(
y |x, θ̂

)
Rn = log

∑
y∈Y

p
(
y |x, θ̂

)
The pNML regret is associated with the stochastic complex-

ity of an hypothesis class as discussed in [24] and [25].

III. INDIVIDUAL DATA ACTIVE LEARNING

In this section, active learning in the individual setting is
presented. In active learning, the learner sequentially selects
data instances, xn, based on some criterion and produces
N training examples {xN , yN }. The objective is to select a
subset of the training set and derive a probabilistic learner
q

(
y |x, xN , yN

)
which will attain the minimal prediction error

among all training sets of the same size. Most selection criteria
are based on uncertainty quantification of data instances in
order to quantify their informativeness. However, in the indi-
vidual setting, there is no natural uncertainty measure since
there is no distribution f (y |x) governing the data. Therefore,
we have to resort to a different approach to perform active
learning in this setting.

We propose to use the minimax regret Rn as defined in
Theorem 1 as an active learning criterion which essentially
quantifies the uncertainty of the whole training set zn for
a given un-labelled test feature x. Since Rn is a pointwise
quantity, we propose to accumulate it across all the features
in the test set.

Therefore, we propose the following criterion for selecting
xn:

CA
n = min

xn ∈Xn
max
yn ∈Yn

∑
x

(∑
y∈Y

p
(
y |x, θ̂ (x, y, zn)

))
(5)



This problems is difficult to solve for a general hypothesis
class in batch form, so we define a greedy form which we
denote as Individual Active Learning (IAL):

CA
n |n−1 = min

xn ∈X
max
yn ∈Y

∑
x

(∑
y∈Y

p
(
y |x, θ̂

(
x, y, xn, yn, zn−1

)))
(6)

where zn−1 is given.
In the next sections, we will analyze the performance of

IAL for binary classification. First, we will prove that IAL
coincides with binary search for binary linearly separable data.
This result is very important since it provides a sanity check
for the use of IAL as an active learning criterion. Finally, we
will derive the IAL for Gaussian Process Classification (GPC)
and analyze its performance on real data.

A. Binary Classification with Separable Data

In this section we discuss the one dimensional barrier where
the data is separable. The idea is to show that in this simple
case, the proposed criterion reduces to simple binary search
which is known to be optimal.

The 1-dimensional barrier hypotheses class is defined as:

p(y = 1|x, θ) =

{
1 if x > θ

0 otherwise
(7)

where the input is x ∈ [0,1], output is y ∈ {0,1} and the
unknown threshold is θ ∈ [0,1].

Theorem 2. For one dimensional separable data, the criterion
in Eq. (6) induces a selection policy which coincides with
binary search.

Proof. The greedy criterion defined in Eq. (6) can be written
as:

CA
n |n−1 = min

xn ∈X
max
yn ∈Y

∑
v∈V

∫
u∈U

p
(
v |u, θ̂n

)
du (8)

where θ̂n is the maximum likelihood estimation based on
training and test data:

θ̂n = arg max
θ∈Θ

p (yn, v |xn,u, θ) (9)

Since zn−1 is assumed known in the greedy case and the
likelihood function is basically a multiplication of indicator
functions resulting in a rectangle window function around the
correct barrier. There are multiple solutions for the maximum
likelihood estimator and we select an arbitrary point in the
posterior’s support.

We can write the likelihood for zn−1 as:

p
(
yn−1 |xn−1, θ

)
∝ 1

(
θ ≥ θn−1

min

)
1
(
θ < θn−1

max

)
(10)

where θn−1
min and θn−1

max represent the support of the posterior on
θ given xn−1, yn−1.

Once we select a new feature point xn (any point in the
support of p

(
yn−1 |xn−1, θ

)
), then based on its label yn which

can be arbitrary (we train for the worst), the likelihood window
function gets split again.

For yn = 0:

p (yn |xn, θ) ∝ 1 (θ ≥ xn) 1
(
θ < θn−1

max

)
(11)

For yn = 1:

p (yn |xn, θ) ∝ 1
(
θ ≥ θn−1

min

)
1 (θ < xn) (12)

Now we look at the expression p
(
v |u, θ̂n

)
:

min
xn ∈X

max
yn ∈Y

∑
v∈V

∫
u∈U

p
(
v |u, θ̂n

)
du

= min
xn ∈X

max{l0, l1}

(13)
where

l0 = |1 − θn−1
max | + 2|xn − θn−1

max | + |xn | = 1 + |xn − θn−1
max |

and

l1 = |θn−1
min | + 2|θn−1

min − xn | + |1 − xn | = 1 + |θn−1
min − xn |

Therefore, the point xn which minimizes the maximal length
is the mid point of the interval

[
θn−1
min, θ

n−1
max

]
�

This theorem indicates that IAL can be a valid active
learning criterion. The more interesting and relevant scenario
is general binary classification on possibly non separable data.
In the next section we will look at IAL for GPC and examine
its performance.

IV. GAUSSIAN PROCESS CLASSIFICATION

In this section we will analyze IAL for Gaussian Process
Classification (GPC). GPC is a powerful, non-parametric
kernel-based model that poses a challenging problem for
information-theoretic active learning since the parameter space
is infinite dimensional and the posterior distribution is analyti-
cally intractable. A detailed introduction to GPC can be found
in [26].

In [13], BALD was analyzed for GPC and compared to
other active learning algorithms including MU. In [14], UAL
was analyzed for GPC too and was shown to perform well
when given access to the un-labelled test set. In this section
we use the mathematical model of [13] which is repeated here
for clarity.

The probabilistic model underlying GPC is as follows:

f ∼ GP(µ(·), k(·, ·))

y |x, f ∼ Bernoulli (Φ ( fx))
(14)

where the parameter f is a function of a feature point x
and is assigned a Gaussian process prior with mean µ(·) and
covariance function k(·, ·). The label y is Bernoulli distributed
with probability Φ( fx), where Φ is the Gaussian CDF.

Without any prior, pNML will give over confident scores
for models with very high degrees of freedom such as GPC.



Therefore, we need to add some regularization [25]. A regular-
ization prior will limit the possible solutions of the hypothesis
class and avoid over-fitting.

For GPC, IAL can be written as:

CA
n |n−1 = min

xn ∈X
max
yn ∈Y

∑
v∈V

∫
u∈U

p
(
v | f̂u

)
du (15)

The maximum likelihood estimate, f̂u (for test point u) is
based on training and test data. Note that the test label v is
not known to the learner and thus all options will be covered
by IAL.

The MAP estimation for the model parameter vector, f :

f̂ = arg max
f

p
(
yn, v |xn,u, f

)
p( f ) (16)

where p( f ) is the regularization prior over the latent vector f .
IAL for GPC in the binary case:

CA
n |n−1 = min

xn ∈X
max
yn ∈Y

∫
u∈U

(
Φ

(
f̂ v=1
u

)
+

(
Φ

(
− f̂ v=−1

u

)))
du

(17)
where f̂ v=1

u and f̂ v=−1
u are the maximum likelihood estimates

of the latent parameter fu for test point u with corresponding
label v.

Inference in GPC is intractable, since given a training set,
the posterior over f becomes non-Gaussian and complicated.
In order to compute IAL in this case, we need to use
approximate inference to model the posterior distribution on
the latent model f . We note that (17) is only dependent on f̂xn
and f̂u , so we can write the expression for the MAP estimation
as:

f̂ ynxn , f̂ vu = arg max
fxn , fu

p (v | fu) p
(
yn | fxn

)
q

(
fxn , fu |yn−1, xn−1

)
(18)

where q
(
fxn , fu |yn−1, xn−1) is a multivariate Gaussian dis-

tribution approximating the posterior on fxn , fu based on
Dn−1 = {xn−1, yn−1}.

The resulting IAL is summarized in Algorithm 1. First, the
algorithm uses an approximate inference method to compute
a Gaussian approximation for the posterior using the available
training set. Next, for each training point all possible labels are
attached along with a sweep on the test set with all possible
labels. We run MAP estimation for all the different config-
urations of training and test and recover the MAP estimate
for the test points. We accumulate the probability of the test
label given these estimations (pNML regrets). Finally, we find
the training point, for which the worst case regret is minimal
over the sum of the test points. For all subsequent tests,
Expectation Propagation (EP) [27] was used for approximating
this posterior using the Matlab GPML toolbox [28].

A. Simulation Results

In this section, IAL is compared to UAL, BALD, MU
and passive learning in an empirical analysis using Gaussian
Process Classification (GPC) over a real data set. The set is
the USPS hand-written digits data set [29]. There are total
of 9298 handwritten single digits between 0 and 9, each of

Algorithm 1 Individual Active Learning

1: procedure IAL - GPC
2: Input: Training Data {Dn−1}, Training and Test sam-

ples {x}N and {u}K .
3: Output: Next data point for labelling - xn
4: Run approximate inference algorithm using {Dn−1} to

get posterior Gaussian density q( f |Dn−1)
5: s = 0
6: for i ← 1 to N do
7: for j ∈ {−1,1} do
8: Set label j for feature xi
9: for k ← 1 to K do

10: for l ∈ {−1,1} do
11: Set label l for feature uk
12: Compute

ˆf luk ,
ˆf j
xi = argmax

fuk , fxi

Φ
(
l · fuk

)
Φ

(
j · fxi

)
q

(
fxi , fuk |D

n−1
)

13: si, j = si, j + Φ
(
l · f̂ luk

)
14: î = argmini maxj s
15: xn = xî

which consists of 16 × 16 pixel image. Half of 9298 digits
are designated as training and the other half are as test. Pixel
values are normalized to be in the range of [-1, 1]. The
objective is to classify the digit 0 versus 2,4,7 and 8. In order
to reduce the dimension of the data, PCA is applied using the
un-labeled training data. Finally, after centering and PCA, the
5 largest Eigenvalues of the PCA are used as the feature space
for classification.

A small random subset of the unlabeled test set is given to
the learner (15 random samples) along with an initial labelled
training set (3 random examples). Active learning is performed
by adding a new data point each iteration based on the different
criteria. For each iteration, the error probability on the test set
is computed and this is shown in Figure 1. It can be observed
that random selection has the worst performance in terms of
sample complexity given error probability. UAL and MU have
comparable performance and slightly better than BALD. IAL
has the best performance since it takes into account the test
set and is not constrained by the assumption that the data is
generated by some class of distributions unlike UAL.

V. CONCLUSIONS

In this work, a new active learning criterion for the individ-
ual data setting was proposed. It was shown that minimizing
the proposed criterion will decrease the minimax regret for
any arbitrary data sequence. It has been shown that for binary
classification, this criterion coincides with binary search for
separable data and is optimal for this scenario. Finally, an
empirical test was conducted where the criterion was analyzed
in comparison with several other active learning criteria and
proved to be superior in terms of sample complexity.
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Fig. 1: Error Probability: Hand-written digits data set
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