
720 IEEE JOURNAL ON SELECTED AREAS IN INFORMATION THEORY, VOL. 2, NO. 2, JUNE 2021
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Abstract—Modern machine learning systems require massive
amounts of labeled training data in order to achieve high accu-
racy rates which is very expensive in terms of time and cost.
Active learning is an approach which uses feedback to only label
the most informative data points and significantly reduce the
labeling effort. Many heuristics for selecting data points have
been developed in recent years which are usually tailored to a
specific task and a general unified framework is lacking. In this
work, a new information theoretic criterion is proposed based
on a minimax log-loss regret formulation of the active learn-
ing problem. First, a Redundancy Capacity theorem for active
learning is derived along with an optimal learner. This leads
to a new active learning criterion which naturally induces an
exploration - exploitation trade-off in feature selection and gener-
alizes previously proposed heuristic criteria. The new criterion is
compared analytically and via empirical simulation to other com-
monly used information theoretic active learning criteria. Next,
the linear hyper-plane hypotheses class with possibly asymmet-
ric label noise is considered. The achievable performance for the
proposed criterion is analyzed using a new low complexity greedy
algorithm based on the Posterior Matching scheme for commu-
nication with feedback. It is shown that for general label noise
and bounded feature distribution, the new information theoretic
criterion decays exponentially fast to zero.

Index Terms—Minimax learning, active learning, posterior
matching, feedback.

I. INTRODUCTION

IN SUPERVISED learning, a training set (features and
labels) is provided to the learner which optimizes its model

parameters to minimize the empirical error on that training set
with the hope of low generalization error. In this passive learn-
ing setting, the training set is randomly drawn from some pool
of available examples and an expert labels them prior to train-
ing. Many machine learning applications today rely heavily on
the assumption that humans can annotate all the available data
for training. However, the massive amounts of data available
today make it impossible to do so. The cost associated with
labeling is high (time and money wise) especially when very
large training sets are needed. Consequently, only a small ran-
dom sub-set is labeled which may be un-representative of the
true underlying model between features and labels, thus large
generalization errors might occur. To avoid this, the training set
is redundant and usually larger than required. Consequently,
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generalization bounds for passive learning error probability do
not decay exponentially fast.

In active learning, the learner has access to a large set
of unlabeled examples and can interact with an expert. The
learner sequentially chooses which data point he wishes the
expert to label based on previously observed examples. This
feedback loop has the potential to significantly reduce the
number of examples needed to achieve a given accuracy level.
The fundamental problem is how to choose the next data point
to be labeled?

In the last decade there has been significant progress in
active learning research. Most rigorous results and bounds are,
however, for binary linear classification or regression prob-
lems. Most papers deal with proposing a heuristic for feature
selection, analyzing its performance and comparing to differ-
ent lower bounds [1], [2] and [3]. Some of the algorithms
and heuristics which have been proposed for active learning
include: [1], [4], [5], [6], [7], [8], [9] and [10].

One well studied approach is based on the disagreement
region introduced by Hanneke in [3]. This region contains
all the features for which at least two candidate learners do
not agree on. Thus, querying the label of such a feature may
be helpful to reduce the candidate pool. The general algo-
rithmic framework of disagreement based active learning in
the presence of noise was introduced with the A2 algorithm
by Balcan et al. in [5] and other related work in [9], [11]
and [12].

Another approach which has proven effective is margin
based active learning which has better label and computa-
tional complexity than disagreement based approaches. The
idea is not to sample features in all the disagreement region
but at carefully selected regions inside, specifically near the
edges of this region. This approach was introduced in [6] and
continued in [13] and [14]. While this approach has much
better computational complexity than the disagreement based
approach, it is not robust to noise. Also, since this algorithm
samples points based on some known prior distribution on the
features, the exponential decay will only work for log-concave
distributions.

In addition, several approaches consider information-
theoretic criteria for selecting features [15], [16] and [17]. The
most common method is uncertainty sampling or Maximum
Uncertainty (MU), where the feature with the highest label
entropy given the training is selected. In some sense this
approach is very similar to the margin based approach in [13].
However, this aggressive, essentially greedy, scheme may lead
to large generalization errors since noise might produce very

2641-8770 c© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: TEL AVIV UNIVERSITY. Downloaded on October 04,2022 at 12:24:12 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0001-7391-213X


SHAYOVITZ AND FEDER: UNIVERSAL ACTIVE LEARNING VIA CONDITIONAL MUTUAL INFORMATION MINIMIZATION 721

high entropy and corrupt the training set. Suppose a very noisy
feature is presented to the learner, then the probability assigned
to all the labels will be very low (essentially uniform), causing
the label entropy to be very high. The learner will thus learn
the noise modalities instead of useful information.

In [17] an information theoretic criterion is proposed which
is based on maximizing the mutual information between
the model and the selected features and provides good
performance. The criterion is based on reducing the number
of possible hypotheses maximally fast, i.e., to minimize the
uncertainty about parameters using Shannon’s entropy. This
criterion also appears as an upper bound on information based
complexity of stochastic optimization in [18] and also for
experimental design of experiments in [19] and [20]. This cri-
terion represents the average reduction in uncertainty on the
model θ after observing the label Yt of feature Xt based on
the available training. Since this maximization is generally
very difficult, a greedy algorithm is proposed, which seeks
the data point Xt that maximizes the decrease in expected
posterior entropy. This approach was empirically investigated
in [21], where a Bayesian method to perform deep learning
was proposed and several heuristic active learning acquisition
functions were explored within this framework. It was shown
that the performance of this criterion, denoted as BALD , was
the best. However, this criterion does not to take into account
the test distribution p(x) and thus may select examples which
are not informative for the test case at hand.

All the aforementioned papers either proposed heuristic
criteria for performing active learning or gave rigorous guar-
antees only for binary linear classification and regression
problems. In this contribution, active learning is addressed
from an information theoretic point of view. First, pas-
sive and active learning are formulated as a minimax log-
loss regret problem and a capacity-redundancy theorem is
developed. Next, a novel active learning criterion which
implicitly optimizes an exploration-exploitation trade off in
feature selection is proposed. This criterion, denoted as
UAL (Universal Active Learning), is compared to BALD
and MU analytically for linear regression and using an
empirical binary classification test. Finally, this criterion is
analyzed for the linear separator hypothesis class. In order
to analyze UAL’s achievable performance in this class, a
low complexity, noise robust and label efficient algorithm
is proposed for bounded prior distributions on the test
feature, x.

This paper is organized as follows. In Section II a new active
learning criterion (UAL) is derived based on a mini-max regret
formulation of the learning problem. This criterion is analyzed
and compared with other active learning criteria. In Section III,
UAL and BLAD are analyzed for the linear regression hypoth-
esis class and the relation to optimal design of experiments is
described. In Section IV, active learning with linear separa-
tors is addressed and a low complexity, noise robust algorithm,
denoted as SPM, is presented. It is shown via simulations that
SPM achieves very good performance in terms of error prob-
ability. Moreover, it is proved that SPM generates an active
learning selection policy for which UAL decays exponentially
to zero. This fact links the two contributions in this paper:

a new information theoretic active learning criterion and an
achievable upper bound for noisy linear separators.

II. MINIMAX ACTIVE LEARNING IN THE

STOCHASTIC SETTING

In this section, the stochastic active learning problem is for-
mulated for the log-loss cost function in a setting similar to
the one described as stochastic universal prediction in [22]. In
this setting, the probability distribution of a label, y, given a
feature, x, is given as p(y|x, θ) with a parameter θ ∈ �, where
� is a set containing all the parameters of a hypothesis class.

In the active learning setting, the objective is to sequentially
select features and collect N training examples (features xN =
{x}Ni=1 and labels yN = {y}Ni=1) which derive a probabilistic
learner for a test label y, given a test feature x: q(y|x, xN, yN),
such that it will perform as close as possible to the best learner
in the hypotheses class: p(y|x, θ), i.e., the Oracle. A related
analysis for passive learning was provided in [23] but assumes
i.i.d training samples.

Since the learner has no access to θ , we wish to minimize
the maximal (worst θ ) expected (with respect to the true dis-
tribution) log-loss regret of this learner to the Oracle. In this
sense, we wish to minimize the regret of the learner to the
Oracle in worst case.

The minimax log loss regret, Rφ , after learning N examples
for a specific feature selection policy φ, is:

Rφ = min
q

max
θ

E

{
log

(
p(y|x, θ)

q
(
y|x, xN, yN

)
)}

(1)

where the expectation in (1) is performed over the joint
probability:

p
(
y, x, xN, yN |θ) = p(y|θ, x)�N

t=1p(yt|xt, θ)

φ
(

xt|xt−1, yt−1
)

p(x) (2)

and φ(xt|xt−1, yt−1) is the sequential selection policy which
gives a probability distribution for each training feature, xt,
based only on the past observed training data xt−1, yt−1.
Another assumption we make is that p(x|θ) = p(x) since the
feature prior should be independent of the model.

Remark 1: Note that the selection may be stochastic, which
means that after observing the past examples there may be
some randomness in choosing the next feature. For example,
in passive learning, the distributions {φ(xt|xt−1, yt−1)}Nt=1 are
uniform, since the examples are drawn uniformly from the
training pool.

In active learning we wish to optimize the examples taken,
or in our case, the selected policy, φ. Therefore we would like
to minimize (1) over {φ(xt|xt−1, yt−1)}Nt=1. The final active
learning problem formulation can be stated as finding the
policy φ which minimizes Rφ , i.e.,

R = min
{φt}Nt=1

min
q

max
θ

E

{
log

(
p(y|x, θ)

q
(
y|x, xN, yN

)
)}

(3)

We derive the following theorem which is the basis for the
active learning criterion.
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Theorem 1 (Redundancy-Capacity): The minimax active
learning problem defined in (3) is equivalent to the conditional
model capacity,

R = min
{φ(xt|xt−1,yt−1)}Nt=1

max
π(θ)

I
(
Y; θ |X, YN, XN) (4)

The optimal learner is:

q∗
(
y|x, xN, yN) =∑

θ

p
(
θ |yN, xN)p(y|θ, x) (5)

where π(θ) is a capacity achieving distribution for the channel
θ → Y given the test X and training XN, YN .

A proof for Theorem 1. was provided in [24] but a shorter
proof in also provided in Appendix A. for completeness. Note
that for any prior distribution π(θ) with θ ∈ �, any policy
φ and a given model class p(y|x, θ), the mutual information
I(θ;Y|X, XN, YN) is well defined. The active learning designer
finds φ and π which solve the minimax problem in (25). Once
π(θ) is known, the optimal learner q∗ is given by (5) for any
realization of xN, yN, x.

Theorem 1, is denoted as Redundancy-Capacity since it is
very similar to the classical result in universal prediction, with
the same name, proposed in [25]. In universal prediction, a
stream of samples is given sequentially to a predictor and the
objective is to predict the next sample based on the constraint
that the samples originate from a source belonging to some
predefined set of distributions. The Redundancy-Capacity links
the minimax prediction problem with channel capacity.

Theorem 1, proposes a new criterion for optimal selection
policy in active learning. The objective is to find a selection
policy which will minimize the conditional capacity between
the model parameters and test label given the test feature and
training data. This is different than active learning strategies
used today which do not take into account the test feature prior,
p(x), and instead maximize the mutual information between
the training and model ignoring the test set if available. In
practical applications, if the test set is available, then there
will be a dedicated pre-processing stage to prune the training
set from data points which seem irrelevant to the test scenario.
This step is implicitly preformed by the proposed criterion.
This has the potential to significantly improve performance in
active learning for priors which are multi-modal and help avoid
learning sub-spaces of features which are non-informative for
the test scenario. There is of course an issue on how to find
p(x), and if such a probability even exists. However, since the
main bottleneck in machine learning is the labeling process
and not the amount of training features, then we can assume
we can estimate the feature probability in some way and come
up with an approximation of p(x) or the relative occurrences
of features in real life.

The following theorem states that the optimal
φ(xt|xt−1, yt−1) places all the probability mass on a
specific feature, and is essentially deterministic given the
history.

Theorem 2 (Optimal Selection Policies): The selection poli-
cies which optimize (25) are deterministic:

φ
(

xt|xt−1, yt−1
)
= δ

(
xt − f

(
xt−1, yt−1

))

where δ(·) is the Dirac or Kronecker delta function for
continuous or discrete xt respectively and f (xt−1, yt−1) is a
deterministic function from the history xt−1, yt−1 sequence to
a feature xt.

The proof in provided in Appendix B.
The optimization of (25) is unfortunately intractable for

many hypotheses classes. The reason is that the number of
candidate policies grows exponentially fast and thus infeasible
to search for the best possible policy. Moreover, the objective
function is not sub-modular or adaptively sub-modular [26]
and thus greedy algorithms are not guaranteed to converge in
the general case. In future work, we plan to explore differ-
ent methods to find approximately optimal solutions for this
problem.

A. Interpretation of the Proposed Criterion

The proposed criterion, which is denoted as UAL, can be
decomposed in the following manner using the chain rule:

I
(
θ;Y|X, YN, XN) = I(θ;Y|X)+ I

(
θ;YN |XN, Y, X

)
− I

(
θ;YN |XN) (6)

I(θ;Y|X) does not depend on the selection policy and the
optimization is only on the difference between two other
mutual information terms. We denote I(θ;YN |XN, Y, X) and
I(θ;YN |XN) as the exploitation and exploration respectively.

Exploitation means that if the test feature and label, (X, Y),
were known in advance, then we would like to select the
training examples which will be as correlative to the test as
possible. If we select training features XN such that for a given
X, Y , the training labels YN will be highly indicative of the test,
then these labels will be independent of the model parameter
θ and thus I(θ;YN |XN, Y, X) will be minimized. Moreover,
this criterion takes into account the prior probability p(x) and
tries to find the best examples averaged across this prior.

Exploration is identical to the criterion used in [17] which
basically means that one wants to find the most uncertain
example in the pool. Therefore, UAL balances between explo-
ration and exploitation and finds the most informative example
given the specific test set at hand.

B. Relation to Other Information Theoretic Active Learning
Criteria

In this section the relation UAL and other criteria such as
BALD [17] and Maximum Uncertainty (MU) [16] is analyzed.
First, a brief review of these criteria is provided.

The MU criterion [16] selects the feature based on:

x∗t = argmax
xt

H
(

Yt|Xt = xt, xt−1, yt−1
)

(7)

MU basically selects a feature in the training set whose
conditional label entropy based on the current training set is
the highest. Since the current model cannot label this fea-
ture well, then this example can improve the learning process
best. However, this example may be noisy and produce high
entropy, thus the learner will now add noise to the training set
and this is of course not helpful to the learning task and the
labeling budget.
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The BALD criterion is defined as:

x∗t = argmax
xt

I
(
θ;Yt|Xt = xt, xt−1, yt−1

)
(8)

According to [17], the objective is to find a feature xt that
maximises the decrease in expected posterior entropy and that
will reduce the hypotheses class as fast as possible. It is obvi-
ous by the definition of mutual information, MU is an upper
bound on BALD.

Both of these criteria make sense in an intuitive manner but
lack a firm mathematical foundation rooted in a clear learning
problem formulation. There is no clear concept what is the
prior of the model θ and no use of the prior on the test features,
p(x). Nevertheless, BALD is used to produce very good results
for active learning using deep neural network [27] and [21].

In order to relate BALD to UAL, for discrete valued labels
Y , (6), becomes:

I
(
θ;Y|X, YN, XN) ≤ I(θ;Y|X)+

N∑
i=1

H(Yi|Xi, Y, X)

− I
(
θ;YN |XN) (9)

which can be further simplified using the chain rule:

I
(
θ;Y|X, YN, XN) ≤ I(θ;Y|X)+ N log2 (|A|)

−
N∑

i=1

I
(
θ;Yi|Xi, Yi−1Xi−1

)
(10)

where Y ∈ A and |A| is the size of the alphabet of the random
label Y .

The first two terms in (10) are constant and thus
the minimization of the R.H.S is only performed on
the third term, which turns into a maximization of∑N

i=1 I(θ;Yi|Xi, Yi−1Xi−1). Therefore, BALD is basically a
greedy algorithm which tries to minimize an upper bound on
UAL for certain hypotheses classes. BALD does not take into
account the minimization of the term I(θ;YN |XN, Y, X) which,
as described before, is related to refining the model for the
specific test distribution.

C. Empirical Comparison Between Criteria

In this section, UAL is compared to BALD, MU and pas-
sive learning in an empirical test using Gaussian Process
Classification (GPC) over a synthetic data set. GP’s are a
powerful and popular non-parametric tool for regression and
classification and a detailed introduction to them can be found
in [28].

In [17], BALD was analyzed using GPC and compared to
other active learning algorithms including MU. In this section,
the same mathematical model and approximations as in [17]
are used and repeated again for clarity.

The probabilistic model underlying GPC is as follows:

f ∼ GP(μ(·), k(·, ·))
y|x, f ∼ Bernoulli

(
�
(
f (x)

))
(11)

where the parameter f , is a function of a feature point x and is
assigned a Gaussian process prior with mean μ(·) and covari-
ance function k(·, ·). The label y is Bernoulli distributed with
probability �(f (x)), where � is the Gaussian CDF.

Fig. 1. Training Set, different colors indicate the label of each feature.

Inference in GPC is intractable, since given a training set,
the posterior over f (per feature x) becomes non-Gaussian and
complicated. In the following test, Expectation Propagation
(EP) [29] was used for approximating this posterior.

UAL requires the computation of I(f ; y|x, xn, yn), which can
be written using (6) as:

I
(
f ; y|x, xn, yn) = Const + I

(
f ; yn|x, y, xn)− I

(
f ; yn|xn) (12)

Defining D = {xn−1, yn−1} and using the approximations
from [17]:

I
(
f ; yn|xn,D

) ≈ H

⎛
⎝�

⎛
⎝ μxn,D√

σ 2
xn,D + 1

⎞
⎠
⎞
⎠

− C√
σ 2

xn,D + C2
e

⎛
⎝ −μ2

xn,D
2

(
σ2

xn,D+C2
)
⎞
⎠

(13)

where C = φ ln 2
2 and μxn,D, σ 2

xn,D are the mean and variance
of the Gaussian approximation (using EP) for the posterior
p(f |xn,D).

Defining D̃ = {xn−1, yn−1, x, y} and using (12) to approxi-
mate I(f ; yn|xn, D̃):

I
(

f ; yn|xn, D̃
)
≈ Ex

⎛
⎝ 1∑

y=−1

I
(

f ; yn|xn, D̃
)

p
(
y|x,D)

⎞
⎠ (14)

where p(y|x,D) ≈ ∫ �(f )N(f ;μD, σ 2D)df
The synthetic data set consists of two dimensional feature

vectors with binary labels as shown in Figure 1, where the yel-
low color indicates ‘−1’ label and blue is ‘+1’. In Figure 2,
the test set is shown and is basically a smaller sub-set of the
feature space. This simulates a scenario where the test is con-
cerned with a particular region of the feature space and there
is no real need to learn the whole labeling function which
may be very complex and require many data points. In prac-
tice, there may be a pre-processing stage which prunes the
training set from data point which are irrelevant to the test,
but this requires domain knowledge regarding the similarity
between data points. On the other hand, UAL, implicitly, takes
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Fig. 2. Test Set, different colors indicate the label of each feature.

into account the unlabelled test data to improve the resulting
classifier.

The unlabelled test set is given to the learner along with an
initial labelled training set and the active selection of train-
ing data starts. The active learning process is performed by
adding a new data point each iteration based on the differ-
ent criteria. For each iteration, the error probability on the
test set is computed and this is shown in Figure 3. It can
be observed that passive has the worst performance in terms
of sample complexity given error probability. BALD and MU
have comparable performance since they do not utilize the
test set features and simply sample the boundary curve at
multiple locations. UAL does take into account the test set
and in Figure 4 one can see a large concentration of training
point in the test set region. In Figure 4, the contours of the
predictive probability for each test point is plotted. Also, the
labelled training data consisting of: 50 random initial training
data points and 30 data points selected by UAL is plotted. We
can see good fit to the test set as depicted in Figure 2.

III. LINEAR REGRESSION

In this section, UAL is applied for the linear regression
hypothesis class. It is shown that UAL aligns with com-
monly used criteria for this setting and provides an alternative
derivation for these criteria.

The underlying model for the hypothesis class, is defined as:

y = xTθ + z (15)

where y, x, θ and n are the observed response/ label, feature
vector, model parameters vector and additive white Gaussian
noise with zero mean and unit variance respectively. We also
add a power constraint E( 1

d‖θ‖2) ≤ σ 2
θ , where d is the

dimension of the vector θ .
The goal of active learning in this setting is to pick a small

number of feature vectors, xN , from the space of possible
features so that the underlying model, which relates input vari-
ables to output responses, is estimated accurately. The optimal
solution to the linear regression problem is called the Ordinary
Least Squares (OLS) solution. The linear regression model has
the property that the error covariance matrix depends on nei-
ther the true parameter vector θ nor the observed response y.

Fig. 3. Error Probability as computed on the test set.

Fig. 4. GPC predictive probability contour lines with data points acquired
using UAL.

This suggests that we can “optimize” the covariance of the
estimator a-priori, even before taking any measurements, trans-
forming the problem from interactive querying an oracle to
subset selection of feature vectors. Active linear regression
has been studied extensively under the mathematical field of
“Optimal Experiment Design” and a summary of this field can
be found in [30].

In linear experimental design, multiple feature vectors are
sampled and a linear model is derived:

y = Xθ + z

where X ∈ R
nxp is a matrix of n feature vectors, y ∈ R

n is the
vector of observable responses and z ∈ R

n is an i.i.d Gaussian
noise vector with zero mean and finite variance σ 2

Z .
The classical experimental design is defined as selecting a

small subset S ⊂ {1, . . . , n} r rows, XS, from X so that estimat-
ing θ is optimized on the selected design XS. Using the selected
training set, one can derive the OLS solution for the parameter
vector θ and since we are looking for S such that XS is most
statistically efficient, the optimal design problem reduces to
minimizing the covariance matrix 
−1 = (XT

S XS)
−1. In [30]

several optimality criteria have been developed for measuring
how well 
−1 is minimized on a selected design XS. In [31],
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performance guarantees for the greedy solution of experimen-
tal design problems are provided. In particular, it focuses
on A and E optimal designs, for which typical guarantees
do not apply since the mean-square error and the maximum
eigenvalue of the estimation error covariance matrix are not
sub-modular.

A. Comparison Between BALD and UAL

Applying UAL and assuming the noise is Gaussian with the
response model (15):

I
(
θ; ytest|xtest, xn, yn) = h

(
ytest|xtest, xn, yn)
− h

(
ytest|θ, xtest, xn, yn) (16)

Since the noise, z is independent from the label y given the
feature vector x, then

I
(
θ; ytest|xtest, xn, yn) = h

(
ytest|xtest, xn, yn)− h(z) (17)

Using the expression for Gaussian entropy,

I
(
θ; ytest|xtest, xn, yn) = h

(
ytest|xtest, xn, yn)− 1

2
log
(

2πeσ 2
Z

)
(18)

UAL first finds the prior π(θ) which maximizes the mutual
information in (18). Since there is a power constraint on θ

then y will also be power limited due to the linear model.
The distribution which will maximize the differential

entropy for y|X, θ under the power constraint is an i.i.d
Gaussian distribution. This distribution can be achieved if the
prior θ ∼ N(0, σ 2

θ Id) is used. Therefore, in the case of the
linear regression hypothesis class, the capacity achieving prior
can be computed analytically.

Using [32],

I
(
θ; ytest|xtest, xn, yn) = Extest

(
log
(
1+ xT

testQxtest

))
(19)

where Q = (XTX+ 1
σ 2

θ

Id)
−1 is the inverse covariance matrix of

p(θ |xn, yn) which is also Gaussian and thus easy to compute
using Kalman filtering. The expectation is performed on the
distribution of the test features xtest.

Upper bounding (19) we get,

Extest

(
log
(
1+ xT

testQxtest

)) ≤ Extest

(
xT

testQxtest

)
(20)

where the bound is tight when xT
testQxtest << 1, which

corresponds to high SNR scenarios.
Therefore,

min
xn

I
(
θ; y|xtest, xn, yn)
≤ min

xn
Tr
(
E
(
xtestx

T
test

)
Q
(
xn)) (21)

This criterion is closely related to the A and V optimal
design criteria [30]. Note that the matrix Q is a function
of the training features xn only and have no dependence on
their respective labels yn. Therefore, there is no real need for
online feedback in the active linear regression problem and
the training set problem can be cast as a subset selection
problem performed offline. This problem is NP hard and thus
approximate solutions are needed.

Another observation is that (21) is exactly the transductive
experimental design proposed heuristically in [33] and UAL
has provided the mathematical reasoning for this criterion.

On the other hand, BALD will try to sequentially maximize
the conditional mutual information I(θ; yn|xn). It is not clear
which prior π(θ) should be used for BALD since this was not
addressed in [17]. Thus, we will use the same prior used in
UAL and the same entropy calculation to get the respective
BALD criterion:

min
xn

I
(
θ; yn|xn) = min

xn
log det

(
Q
(
xn)) (22)

BALD converges to D-optimal design [30]. Note that
D-optimal design is a sub-modular objective and thus greedy
optimization as BALD suggests will provide a close to optimal
solution.

Therefore, UAL and BALD converge to two different
experimental design criteria which are suited for different
applications as described in [30]. Note that MU in this case
will be identical to BALD since h(yt|xt, θ, xt−1, yt−1) = h(z).

IV. LINEAR SEPARATORS WITH LABEL NOISE

In this section, UAL is analyzed for learning half-spaces in
R

n. This learning problem is probably the most well studied
for active learning with well established bounds and algorithms
for different label noise models and feature priors. In [13],
the first algorithm to achieve near optimal sample complex-
ity for a noiseless Oracle, using margin based active learning
was proposed. This algorithm performs well under low noise
conditions and log-concave feature distributions. In [34], an
efficient Perceptron-based algorithm for active learning homo-
geneous half-spaces under the uniform distribution over the
unit sphere was proposed. This algorithm performs well also
under the bounded noise condition [35], where each label is
flipped with probability at most η ≤ 0.5. In [36], a margin
based algorithm is presented which handles bounded noise
using a polynomial regression approach for shrinking the dis-
agreement region. However, all these algorithms achieve good
sample complexity only under log concave feature priors and
symmetric binary noise models, i.e.,:

P(y = 1|x ≥ θ) = P(y = 0|x ≤ θ)

In this contribution, we would like to address a general
case of noisy Oracles for learning hyper-planes. We would
like to analyze the achievable performance of UAL and verify
that it behaves as other active learning criteria behave for this
hypothesis class.

The model for the noisy Oracle is based on an hypothe-
ses class composed of a one dimensional linear separator
with threshold θ0, followed by a BAC (Binary Asymmetric
Channel) with parameters (p, q), as described in Fig. (5). The
higher dimensional linear separator is generalized accordingly.
The parameters p, q are assumed in this work to be known a-
priori and in future work we will address the joint estimation
of θ, q and p using active learning.

The algorithm which will be developed in this section can
handle any Discrete Memory-less Channel (DMC) noise which
can be asymmetric as shown in Fig. (5). Also, we will not
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Fig. 5. Noisy Asymmetric One Dimensional Linear Separator.

use the assumption of log-concave feature priors since our
algorithm will not randomly draw features from the pool
and thus eliminate the need for log-concavity of this prior.
The algorithm proposed will have a polynomial computational
complexity making it usable for real-world usage. Finally,
the achievable performance for UAL in the linear separator
hypothesis class is examined with the proposed algorithm.

A. Communication With Noiseless Feedback and the
Posterior Matching Scheme

The problem of active learning a classifier with a noisy
oracle is closely related to communication over a noisy binary
channel with noiseless feedback. In this section, we will dis-
cuss this relationship and provide a short overview of Posterior
Matching, [37], which is a capacity achieving transmission
scheme which utilizes noiseless feedback.

In the world of communications theory the problem of
achieving capacity in noisy binary channels is well studied,
where the underlying objective is to develop coding and decod-
ing schemes which approach zero error probability as the
block length grows. In order to achieve transmission at capac-
ity approaching rates, one needs to develop complex channel
codes and employ computationally intensive decoding algo-
rithms. Feedback cannot increase the capacity of memoryless
channels as proved by Shannon, but utilization of noiseless
feedback can boost reliability, allow rate adaptation to cope
with unknown channels and significantly simplify transmission
schemes. In [38], Horstein presented a simple feedback utiliz-
ing scheme for the Binary Symmetric Channel (BSC). In that
work, information is represented by a uniformly distributed
message point over the unit interval, its binary expansion rep-
resenting an infinite random binary sequence. The message
point is then conveyed to the receiver in an increasing res-
olution by always indicating whether it lies to the left or
to the right of its posterior distribution’s median, which is
also available to the transmitter via feedback. This, in anal-
ogy to active learning, is to transmit the point which answers
the most informative binary question that can be posed by
the receiver based on its received information. Bits from the
binary representation of the message point are decoded by
the receiver whenever their respective intervals accumulate a
sufficient posterior probability mass.

In [37], Shayevitz and Feder showed that Horstein’s method
is a specific instance of a more general approach which

they called Posterior Matching (PM). This scheme utilizes
the noiseless feedback to achieve capacity for any Discrete
Memory less Channel (DMC). The flow of PM is as fol-
lows: At each time instance, the transmitter computes the
posterior distribution of the message point given the receiver’s
observations. According to the posterior, it “shapes” the mes-
sage point into a random variable that is independent of the
receiver’s observations and has the desired input distribution,
and transmits it over the channel. Intuitively, this random vari-
able captures the information still missing at the receiver,
described in a way that best matches the channel input. In
the special cases of a BSC with uniform input distribution,
PM is reduced to Horstein’s scheme.

The PM scheme is defined for a channel input and output
X and Y respectively with known prior and channel transition
probability law: P(x) and P(Y|X) respectively. As with active
learning, the channel output Yt−1 is passed to the transmitter
via noiseless feedback and helps the PM scheme to generate
a new channel input Xt. The receiver can then use all the
received signals Yt to generate an estimate of the message θ0.

The next channel input is given by:

Xt+1 = F−1
X

(
Fθ0|Yt

(
θ0|Yt)) (23)

where FX , Fθ0|Yt and θ0 are c.d.f’s and the message respec-
tively.

B. One Dimensional Noisy Linear Separator

In Fig. 6 the basic flow diagram of the learning problem
is shown. The feature xt is selected by a selection policy φ

based on the past training. This feature is passed through a
one dimensional linear separator, generating a single bit, rep-
resenting the true label associated with this feature. This label
is passed through a noisy channel and this is basically the
mechanism generating the training features and labels.

The learning flow in Fig. 6 can also be viewed as a com-
munications problem, as observed by [1] and others. The
oracle and learner can be viewed as: a transmitter, channel
and feedback as detailed in the dashed boxes. The transmit-
ter’s output is the “clean” label bit generated by some feedback
driven coding scheme. In order to have as few oracle labeling
operations as possible, the objective will be that the Oracle
“transmit” as few bits over the noisy channel as possible
and still have enough samples so the classifier will have low
error probability. The input to the noisy Oracle can be viewed
as a coding function on a message θ and then transmission
through the noisy channel. This is exactly the same as design-
ing a transmission scheme which achieves capacity over this
channel.

This scheme generates Xt ∼ PX which are independent of
Yt−1 and this is basically a two step procedure of zooming in
on the interesting region in the posterior and matching to the
channel input distributing.

In the next theorem, it is shown that PM based active learn-
ing (with appropriate input channel distribution) produces a
selection policy such that the active learning criterion for the
one dimensional threshold decays exponentially fast to zero.
Moreover, this result provides an exponent for the decay of (4),
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Fig. 6. 1-Dimensional Noisy Linear Separator Block Diagram.

Fig. 7. Binary Asymmetric Channel.

which is equivalent to the Shannon capacity of the noisy
channel (W) - CW .

Theorem 3: The 1-dimensional barrier hypotheses class is
defined as:

p(v|x, θ) =
{

1 if x > θ

0 otherwise
(24)

where the input is x, output is v and the threshold is θ . The
output, v, is the input to a Binary Asymmetric Channel (BAC)
with output, y, as defined in Figure 7 and ∀x ∈ X , p(x) ≤ α.

PM induced active learning produces a selection policy such
that:

lim
n→∞ I

(
θ;Y|X, xn, yn) = O(2−nCW

)
where CW is the Shannon capacity of the BAC channel W and
π(θ) is a uniform distribution on the appropriate interval.

The proof is detailed in Appendix C.
Remark 2: What happens if p and q are unknown? For the

Binary Symmetric Channel (BSC), if there exists an upper
bound on p, then one can transmit, in principle, at any rate
below the capacity derived from this upper bound. More gen-
erally, this is proved in [39, Th. 8] under the discussion on
Mismatch Achievability. In that theorem, Shayevitz and Feder
prove that when the true channel is p(Y∗|X∗) and induces some
stationary input distribution p(X∗). Then a scheme designed
for a pair of an input distribution p(X) and a noisy channel
p(Y|X) will have a penalty in the rate (relative to I(X∗;Y∗))

given by: D(p(Y∗|X∗)||p(Y|X)|p(X∗))−D(p(Y∗)||p(Y)), where
D is the Kullback-Leibler divergence. Therefore, one can use
PM with a mismatched prior and channel model and achieve
a rate which is lower than the actual capacity of the channel.

In Theorem 3, the prior π(θ) is chosen to be uniform since
the convergence of PM to the correct message θ is guaranteed
for a uniform prior on the messages. However, the mutual
information maximizing prior π∗(θ) of (4) may not be uni-
form. In the next theorem, it is proven that when using the
capacity achieving prior and the training set selected by PM
(using uniform prior), UAL still decays to zero at the same
exponential rate.

Theorem 4: Given a training set (xn, yn) selected by PM
using a uniform prior πu(θ) and

π∗(θ) = argmax
π(θ)

I
(
Y; θ |X, Yn, Xn)

Then,

lim
n→∞ I

(
θ;Y|X, xn, yn) = O(2−nCW

)
where the conditional mutual information above is computed
using the prior π∗(θ)

This theorem basically means that the uniform prior is as
good as the capacity achieving prior.

Proof: Since (xn, yn) were selected using PM, then based
on the results from [39], the posterior satisfies:

lim
n→∞ sup

θ1

∫ θ1+2−nCW

θ1

p
(
θ |xn, yn)dθ = 1 (25)

Using Bayes,

lim
n→∞

1

Z
sup
θ1

∫ θ1+2−nCW

θ1

p
(
yn|xn, θ

)
πu(θ)dθ = 1 (26)

where Z = ∫ p(yn|xn, θ)πu(θ)dθ .
We define the interval A = [θ1, θ1 + 2−nCW ] and thus:

lim
n→∞

∫
θ∈Ac

p
(
yn|xn, θ

)
πu(θ)dθ = 0 (27)

where the set Ac is the complementary set to A.
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For the capacity achieving prior π∗(θ), a given training set
size n and using Hölder’s inequality:

0 ≤
∫

θ∈Ac
p
(
yn|xn, θ

)πu(θ)π∗(θ)

πu(θ)
dθ

≤
∫

θ∈Ac
p
(
yn|xn, θ

)
πu(θ)dθ

∫
θ∈Ac

π∗(θ)

πu(θ)
dθ (28)

Based on the multiplication law for limits and since the two
limits exist, then:

0 ≤ lim
n→∞

∫
θ∈Ac

p
(
yn|xn, θ

)
π∗(θ)dθ

≤ lim
n→∞

∫
θ∈Ac

p
(
yn|xn, θ

)
πu(θ)dθ lim

n→∞

∫
θ∈Ac

π∗(θ)

πu(θ)
dθ

(29)

Using (27):

0 ≤ lim
n→∞

∫
θ∈Ac

p(yn|xn, θ)π∗(θ)dθ

≤ 0 · lim
n→∞

∫
θ∈Ac

π∗(θ)

πu(θ)
dθ (30)

Since limn→∞
∫
θ∈Ac

π∗(θ)
πu(θ)

dθ exists and is finite for any
probability distribution π∗(θ), then

lim
n→∞

∫
θ∈Ac

p
(
yn|xn, θ

)
πu(θ)dθ = 0.

Theorem 3 confirms that UAL behaves similarly to other cri-
teria in the one dimensional linear separator hypothesis class.
Moreover, the decay factor for this convergence is provided,
which is the Shannon capacity of the noisy channel. In the next
section, higher dimensional linear separators will be addressed
and the exponential decay of UAL will be demonstrated using
a novel active learning algorithm.

C. Active Learning Hyper-Planes via Successive Posterior
Matching

In this section, a label efficient, low complexity algorithm
for active learning high dimension linear separators with noisy
labels under bounded prior distributions is proposed. The basic
idea is to successively localize the spherical coordinates of
the normal vector w, representing the linear separator, using
PM. This algorithm, which is denoted as Successive Posterior
Matching (SPM) achieves an exponential improvement over
passive learning in label complexity with the label noise chan-
nel capacity divided by the dimension as the exponent’s decay
coefficient.

In this setup, the features x ∈ R
d are assumed to have a

bounded feature distribution, p(x) ≤ α, for all x. The hypothe-
ses class contains all possible homogeneous hyper-planes with
normal vector w. The relation between feature x and label v
is defined as follows,

p
(
v|x, w

) =
{

1 if wTx > 0

0 otherwise
(31)

However, labeling may be a noisy process and the oracle
may make errors. The noisy label y, outputted by the oracle is

Algorithm 1 Active Learning via Successive Posterior
Matching

1: procedure SPM
2: Init: θ̂ = [π

2 , π
2 , π

2 , . . . , π
2 ],

3: Init: ∀i ∈ [1:d − 1], p(θi) = Unif [0, π ]
4: for i← d − 1 to 1 do
5: for k← 1 to n do
6: θ̂i = F−1

θi|xi
1:k−1,y

i
1:k−1

(
p−0.5

p+q−1

)
7: xi

k = [�d−1
l=1 sin(θ̂l), cos(θ̂d−1)�

d−2
l=1 sin(θ̂l)

, . . . , cos(θ̂i)�
i−1
l=1 sin(θ̂l), . . . , cos(θ̂1)]

8: yi
k = Label(xi

k)

9: Update p(θi|xi
1:k, yi

1:k)

10: θ̂i = θ̂i + π
2

modeled as the output of a binary asymmetric channel detailed
graphically in Fig. 7. It is important to note here that the
proposed algorithm SPM can also work for a noisy channel
with K ≥ 2 possible output labels and the binary channel is
used here for simplicity purposes.

It is assumed that the parameters of the noisy channel p, q
are known a-priori and can be different.

SPM is detailed in Algorithm 1, where the estimations of
the spherical coordinates of w are denoted by θ̂ . In the initial-
ization stage, each entry in θ̂ , is set to π

2 and its respective
posterior is uniform.

Next, in iteration i, SPM localizes the boundary between
two hyper planes by querying points x with spherical coor-
dinates fixed to θ̂ and sweeping over θi. After acquiring n
training points using PM, the median of p(θi|xn, yn) is com-
puted. In order to generate θ̂i, π

2 is added to the computed
median to account for the fact that the normal vector needs
to be estimated. This process repeats for the next angle θi−1.
Note that the number of labeling operations is dn where d+1
and n are the dimension of the vector space and the number
of labeling operations for each iteration, respectively.

In order to analyze the performance of SPM for UAL, the
capacity achieving prior π(θ) needs to be computed. This
is quite difficult and a clear analytical solution is hard to
find. Therefore, a uniform prior is used and achieves close to
optimal performance based on the reasoning from Theorem 4.

The convergence of SPM is detailed in the following
theorem:

Theorem 5: Suppose x ∈ R
d+1 with a bounded p.d.f on

the test feature ∀x , p(x) ≤ α. Also, assume the Oracle is
some member of a d dimensional homogeneous hyper-plane
hypotheses class followed by a BAC.

Then, SPM algorithm produces a selection policy which
satisfies:

lim
n→∞ I

(
θ;Y|X, xn, yn) = O(2−

n
d CW

)
where n is the total number of Oracle queries and CW is the
Shannon capacity of the BAC with transition probability W.

The proof is provided in Appendix D.
Note that the update function in step 9 refers to a

Bayesian computation of the posterior of the threshold point,
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Fig. 8. Error probability for linear separator in R
200 and R

500 under BAC
label noise.

Fig. 9. Error probability for linear separator in R
200 with different noise

levels.

based on all the observed training examples. The posterior
p(θi|xi

1:n, yi
1:n) is updated at each iteration and the threshold

point needs to be localized with very high accuracy. The Naïve
approach would be to quantize the interval [0, π ] and com-
pute the posterior for each quantiztion level. However, this
approach is computationally expensive and also limited in
accuracy. Since the hypothesis class is a linear separator fol-
lowed by a noisy binary channel, then the posterior of the
intersection angle is a multiplication of different step func-
tions. This enables SPM to only maintain a list of the step
points and update the value of the posterior between these
points. Since the number of points is exactly the number of
training examples, then the complexity of the calculation is
proportional to n, and so the whole computational complexity
of the algorithm is linear with n and mathematically exact.

D. Simulation Results

In this section, SPM is compared to a widely used passive
learning algorithm for learning hyper planes - Support Vector
Machine (SVM) which is known to perform very well even in
noisy conditions. The comparison will be for feature spaces
with d = 200 and d = 500 and using a BAC with q = 10−3

and p = 10−4. A Monte Carlo simulation was implemented

to estimate the error probability for an active learner based on
SPM and a passive learner based on SVM. In Figure 8, the
error probabilities as a function of the total number of labels
performed are presented for different space dimensions. Each
test for d = 200 or d = 500 has the SVM and SPM error prob-
abilities and also the trend line as predicted by Theorem 5 for
SPM. It can be seen that the error probability decay is expo-
nential with the decay factor related to the channel capacity
divided by the degrees of freedom, which is in agreement with
the theory. In Figure 9, the error probabilities for d = 200 with
different noise levels: p = 10−2 and p = 10−3 are plotted and
it can be seen that the theory holds in these cases too.

V. CONCLUSION

In this work, a new criterion for active learning motivated
by a Minimax redundancy view of the learning problem was
introduced. The relation between this criterion and commonly
used active learning criteria was analyzed. The proposed cri-
terion, UAL, intrinsically balances an exploration-exploitation
trade-off and thus has the potential to outperform commonly
used uncertainty maximization criteria.

Later, the linear separator problem with asymmetric noise
was considered and a low complexity, noise robust algorithm
for active learning has been presented. It was proven that this
algorithm achieves exponential decay of the proposed crite-
rion and empirically shown that the error probability decays
exponentially with the same rate to reach the Oracle’s error
probability.

In future work, the Minimax redundancy objective will be
modified, so it will be able to address the fact that the model
generating the labels and the inference model may not be in
the same hypothesis class.

APPENDIX A
PROOF OF THEOREM 1

Proof: The proof is very similar to the one in [25] but with
small technical modifications. First, we induce a probability
measure π(θ) over the parameter θ :

R = min
{φt}Nt=1

min
q

max
π(θ)

E

{
log

(
p(y|x, θ)

q
(
y|x, xN, yN

)
)}

(32)

where the worst θ is with probability one.
Then, observe that,

E

{
log

(
p(y|x, θ)

q
(
y|x, xN, yN

)
)}
=
∑
θ

π(θ)
∑

xN ,yN ,x

p
(
yN, xN, x|θ)DKL

(
p(y|x, θ)||q(y|x, xN, yN)) (33)

Since (33) is a non-negative weighted sum of convex func-
tions (for each (x, xN, yN), the KL divergence is convex in
q(y|x, xN, yN)) and concave (linear) in π(θ), and the set of
distributions is the probability simplex which is compact and
convex, then we can apply the Minimax theorem [40].

Plugging (33) in to (32) and using the Minimax theorem,

R = min
{φt}Nt=1

max
π(θ)

min
q

E

{
log

(
p(y|x, θ)

q
(
y|x, xN, yN

)
)}

(34)
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Now we can find the learner q (for each x, xN, yN) which
optimizes (34) for a given {φ(xt|xt−1, yt−1)}Nt=1 and π(θ).

Note that:

p
(
θ |yN, xN, x

) = p
(
yN, xN, x, θ

)
p
(
yN, xN, x

)
Then,

E

{
log

(
p(y|x, θ)

q
(
y|x, xN, yN

)
)}
= ExN,yN,x

∑
θ

p
(
θ |yN, xN, x

)
DKL

(
p(y|x, θ)||q(y|x, xN, yN)) (35)

Then, the optimal q which minimizes the KL divergence is:

q∗
(
y|x, xN, yN) =∑

θ

p
(
θ |yN, xN)p(y|θ, x) (36)

Note that q is optimal regardless of the selection policy
and thus optimal for both passive and active learning. The
predictor q is a function of the training set and test feature
but also loosely dependent (for large N) on π(θ). The optimal
prior π(θ) is different for a given selection policy though.

The expected regret of the optimal predictor given a fixed
selection strategy and N examples is the conditional mutual
information between the test label and model parameters:

E

{
log

(
p(y|x, θ)

q∗
(
y|x, xN, yN

)
)}
= I

(
Y; θ |X, YN, XN) (37)

and π(θ) maximizes the mutual information (capacity achiev-
ing distribution) for a given policy.

APPENDIX B
PROOF OF THEOREM 2.

Proof: We wish to analyze the conditional mutual
information I(θ;Y|X = x, Yn = yn, Xn = xn). First, we
analyze the posterior:

p
(
y|x, yn, xn) =∑

θ

p(θ |x, yn, xn)p
(
y|x, yn, xn, θ

)
(38)

Using the fact that given θ and x, y is independent of xn, yn:

p
(
y|x, yn, xn) =∑

θ

p(θ |yn, xn, x)p(y|x, θ) (39)

Using Bayes,

p(θ |yn, xn, x) = p(yn, xn, x|θ)π(θ)

p(yn, xn, x)
(40)

Therefore,

p
(
θ |yn, xn, x

)
= �n

t=1p(yt|xt, θ)φ
(
xt|xt−1, yt−1

)
p(x|θ)π(θ)∑

θ p(x|θ)π(θ)�n
t=1p(yt|xt, θ)φ

(
xt|xt−1, yt−1

) (41)

Eliminating φ(xt|xt−1, yt−1)

p
(
θ |yn, xn, x

) = �n
t=1p(yt|xt, θ)p(x|θ)π(θ)∑

θ p(x|θ)π(θ)�n
t=1p(yt|xt, θ)

(42)

Therefore,

p
(
y|x, yn, xn) =∑

θ

p(y|x, θ)
�n

t=1p(yt|xt, θ)p(x|θ)π(θ)∑
θ p(x|θ)π(θ)�n

t=1p(yt|xt, θ)

(43)

and thus, for a given π(θ), the value of the posterior
p(y|x, yn, xn) does not depend on the value of the selection
policy.

We can write the conditional mutual information explicitly,

I
(
θ;Y|X, Yn, Xn) = ∑

x,yn,xn

I
(
θ;Y|X = x, Yn = yn, Xn = xn)

·p(x, yn, xn) (44)

Then,

I
(
θ;Y|X, Yn, Xn) = ∑

x,yn,xn

I
(
θ;Y|X = x, Yn = yn, Xn = xn)

·
(∑

θ

p(x|θ)π(θ)�n
t=1p(yt|xt, θ)

× φ
(

xt|xt−1, yt−1
))

(45)

which can be written as,

I
(
θ;Y|X, Yn, Xn) =∑

yn,xn

φ
(

xt|xt−1, yt−1
)

·I(θ;Y|X, Yn = yn, Xn = xn)
·
(∑

θ

π(θ)�n
t=1p(yt|xt, θ)

)
(46)

Since the weighted average of positive values (mutual
information is always larger or equal to 0) is always bigger
than the minimum of the set, we come to the conclusion that
the optimal selection strategy is a delta function for each step
which correspond to the trajectory xn, yn which minimizes the
conditional mutual information I(θ;Y|X, Xn = xn, Yn = yn).

APPENDIX C
PROOF OF THEOREM 3

Proof: In [37], it is proved that PM achieves capacity on the
BAC. Achieving capacity essentially means that the maximum
amount of bits are transmitted and decoded without error with
the minimal amount of channel uses. This is analogous to
high accuracy on θ0 (low generalization error) using as few
Oracle calls as possible. This is exactly the target of active
learning and we will now show that PM on BAC is equivalent
to a specific active learning policy for the hypotheses class
discussed here.

The proposed selection scheme selects the training fea-
ture, xt, based on previously observed labels yt−1 (xt−1 are
a deterministic function of yt−1):

xt = F−1
θ |yt−1

(
p− 0.5

p+ q− 1

)
(47)
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Therefore, the input to the BAC, vt, is computed accord-
ing to:

vt =
{

0 xt ≤ θ0
1 xt > θ0

(48)

Now, we would like to show that this selection of xt

generates vt which achieves capacity for the BAC.
Define an auxiliary Bernoulli random variable Q ∼

Ber( p−0.5
p+q−1 ) and use the fact that a Cumulative Distribution

Function (CDF) is always increasing, then vt can also be
described as:

vt = F−1
Q

(
Fθ |Yt−1(θ0)

)
(49)

which is exactly the PM scheme for a BAC channel with p, q!
Therefore, the error probability on the message θ

approaches zero as the number of channel uses, n, goes to
infinity:

lim
n→∞ sup

θ1

∫ θ1+2−nCW

θ1

p
(
θ |yn, xn)dθ = 1 (50)

This means that most of the probability mass is centred in an
interval of length 2−nCW where the true barrier, θ0, resides,
where Q is the input distribution to the BAC and W is the
BAC transition probability.

Now we can analyze the active learning criterion for the
PM selection with training xn, yn. We will compute the desired
mutual information using the difference of the two conditional
entropies:

H
(
Y|X, Xn = xn, Yn = yn)
=
∫

HB

(∫
P(Y = 1|x, θ)p

(
θ |xn, yn)dθ

)
p(x)dx (51)

and the conditional entropy with θ :

H
(
Y|X, θ, Xn = xn, Yn = yn)
=
∫

HB(P(Y = 1|x, θ))p
(
θ |xn, yn, x

)
dθp(x)dx (52)

For BAC, the binary entropy conditioned on a specific x and
θ , can be written as,

H
(
Y|x, xn, yn) = HB

((
q
(
1− Fθ |xn,yn(x)

)
+ (1− p)Fθ |xn,yn(x)

))
(53)

H
(
Y|x, θ, xn, yn) = HB(qδ(x ≤ θ)+ (1− p)δ(x > θ)) (54)

Therefore,

lim
n→∞H

(
Y|X, xn, yn) = ∫ θ1

0
HB(q)p(x)dx

+
∫ 1

θ1+2−nCW
HB(1− p)p(x)dx

+
∫ θ1+2−nCW

θ1

HB(q(1− Fθ (x))

+ (1− p)Fθ (x))p(x)dx

(55)

where θ1 is estimated using (50) for a division of the interval
(0, 1) to bins on length 2−nCW .

Similarly,

lim
n→∞H

(
Y|X, θ, xn, yn) ≥ ∫ θ1

0
HB(q)p(x)dx

+
∫ 1

θ1+2−nCW
HB(1− p)p(x)dx

(56)

Therefore the desired mutual information can be upper
bounded by,

0 ≤ lim
n→∞ I

(
θ;Y|X, Xn, Yn) ≤ α2−nCW (57)

This concludes the proof that active learning via PM
achieves exponential decay and the important takeaway here
is that the decay factor is dependent on the channel and the
input distribution which achieved the capacity.

APPENDIX D
PROOF OF THEOREM 5

Proof: Assume there is a homogeneous hyper-plane sepa-
rating two complementary volumes in R

d. This hyper-plane
is defined by a unit length normal vector w which can be
described by its spherical coordinates θ .

The idea of SPM is to successively estimate the spherical
coordinates of w using PM, one coordinate at a time. In the
first iteration, the spherical coordinate, θd−1 is estimated and
used for the estimation of the next spherical coordinate, θd−2.
This process repeats until all the coordinates are estimated.

A. SPM Flow

In the first step of Algorithm 1, which corresponds to θd−1,
SPM searches for the intersection point between the hyper
plane defined by w and an arc, r(φ) defined by the following
description:

r(φ) = [sin(φ), cos(φ), 0, 0, . . . , 0]

for φ ∈ (0, π).
This problem is a 1-dimensional noisy barrier model on

the interval (0, π), thus PM will query points in this interval
and provide an estimate of the intersection point. The esti-
mated intersection point, xd−1

n , after n training points can be
described as:

xd−1
n = [sin(φn), cos(φn), 0, 0, . . . , 0] (58)

where φn is final queried point (angle) in the
interval (0, π).

The relation between φn and the estimate θ̂d−1 of the
spherical coordinate θd−1 (of w), is given by:

θ̂d−1 = φn + π

2
(59)

Using (50), the following holds:

lim
n→∞ p

(
θd−1|xn, yn) = 2nCW (60)

for any θd−1 ∈ [θ̂d−1 − 2−nCW−1, θ̂d−1 + 2−nCW−1]
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In the next iteration of step 4 in Algorithm 1, the intersection
between the hyper-plane and the arc, r(φ):

r(φ) =
[
sin
(
θ̂d−1

)
sin(φ), cos

(
θ̂d−1

)
sin(φ),

cos(φ), 0, 0, . . . , 0
]

for φ ∈ (0, π)

The estimated intersection point after n training points:

xd−2
n =

[
sin
(
θ̂d−1

)
sin(φn), cos

(
θ̂d−1

)
sin(φn),

cos(φn), 0, 0, . . . , 0
]

Again, the estimated spherical coordinate is:

θ̂d−2 = φn + π

2
(61)

This process goes on for all the spherical coordinates.

B. Proof Idea

Now that we have detailed the mechanism generating the
estimates for the spherical coordinates, we can show how the
active learning criterion decays for this training set selection
policy. The main idea is to show that most of the probability
mass of the joint posterior for the spherical coordinates reside
inside a narrow enough cone in space, such that the active
learning criterion decays exponentially fast to zero.

The active learning criterion, which is the conditional
mutual information, is a difference of the conditional entropy
of the test label Y given the training and test feature X:

H
(

Y|X, Xdn = xdn, Ydn = ydn
)

∫
HB

(∫
P
(
Y = 1|x, θ)p(θ |xdn, ydn

)
dθ

)
p
(
x
)
dx (62)

and the conditional entropy of the test label Y given the
training, test feature X and model parameter θ :

H
(

Y|X, θ, Xdn = xdn, Ydn = ydn
)

=
∫

HB
(
P
(
Y = 1|x, θ))p(θ |xdn, ydn

)
dθp(x)dx (63)

The spherical coordinates posterior can be decomposed
using the chain rule for probabilities,

p
(
θ |xnT , ynT

) = �1
i=d−1p

(
θi|θd−1

i+1 , xnT , ynT
)

(64)

where nT = dn.
We will now concentrate on the individual posteriors and

show that they concentrate to the correct spherical coordinates
fast.

C. Posterior for θd−2

For simplicity, we will first compute the posterior
p(θd−2|θd−1, xnT , ynT ). After running the PM scheme for θd−2,
all normal vectors, w, which are possible candidates for the
true normal vector, must satisfy the following equality with
the estimated threshold point xd−2

n :

lim
n→∞Pr

(∣∣∣wTxd−2
n

∣∣∣ ≤ 2−nI |θd−1, xn, yn
)
= 1

This equality basically creates a constraint on the possible
values θd−2, can take and we can explicitly write this as:∣∣∣wTxd−2

n

∣∣∣ = ∣∣∣sin
(
θ̂d−1

)
sin(φn)sin(θd−1)sin(θd−2)

+ cos
(
θ̂d−1

)
sin(φn)cos(θd−1)sin(θd−2)

+ cos(φn)cos(θd−2)

∣∣∣ ≤ 2−nI

which can be written as:

|sin(φn)sin(θd−2)γd−1 + cos(φn)cos(θd−2)| ≤ 2−nI (65)

where,

γd−1 = sin(θd−1)sin
(
θ̂d−1

)
+ cos

(
θ̂d−1

)
cos(θd−1) (66)

We note that γd−1 is an inner product between two unit
length vectors and thus:

γd−1 = cos
(
θd−1 − θ̂d−1

)
and according to (60), with probability approaching to 1 as n
goes to infinity, γd−1 ≤ cos(2−nCW ). We also note that since
2−nCW is small then we can approximate γd−1 using its Taylor
expansion:

γd−1 ≈ 1− 2−2nCW

2
(67)

Therefore we can approximate (65) as,∣∣∣∣sin(φn)sin(θd−2)

(
1− 2−2nI

2

)
+ cos(φn)cos(θd−2)

∣∣∣∣ ≤ 2−nI

(68)

This is equivalent to:∣∣∣cos(φn − θd−2)− 2−2nI

2 sin(φn)sin(θd−2)

∣∣∣ ≤ 2−nI (69)

We will use the reverse triangle inequality and get:∣∣∣∣|cos(φn − θd−2)| −
∣∣∣∣2−2nI

2
sin(φn)sin(θd−2)

∣∣∣∣
∣∣∣∣ ≤ 2−nI (70)

Therefore,

|cos(φn − θd−2)| ≤ 2−nI + 2−2nI

2

For large enough n, we can expand cosine around π
2 and

get that the angles θd−2 satisfy:∣∣∣θ̂d−2 − θd−2

∣∣∣ ≤ 2−nI + 2−2nI

2
(71)

Which basically means that:

lim
n→∞ Pr

(∣∣∣θ̂d−2 − θd−2

∣∣∣ ≤ 2−nI + 2−2nI

2
|θd−1, xn, yn

)
= 1

(72)

which basically means for large enough n (d is fixed):

lim
n→∞Pr

(∣∣∣θ̂d−2 − θd−2

∣∣∣ ≤ 2−nI |θd−1, xn, yn
)
≈ 1 (73)

Therefore, we approximately get the same condition as
in (60).
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D. Posterior for θi

We can now move to the general case of θi. We will show
using recursion, that the posterior concentrates to the correct
value appropriately. The final threshold point after n labeling
operations for the i’th spherical coordinate is defined as:

xi
n =

[
sin(φn)�

d−1
l=1,l �=i sin

(
θ̂l

)
,

cos
(
θ̂d−1

)
sin(φn)�

d−2
l=1,l �=i sin

(
θ̂l

)
,

. . . , cos(φn)�
i−1
l=1 sin

(
θ̂l

)
, . . . , cos

(
θ̂1

)]
Again, due to PM, the following holds:

lim
n→∞Pr

(∣∣wTxi
n

∣∣ ≤ 2−nI |θd−1
i+1 , xnT , ynT

)
= 1

We define the following recursion rule:

γi = sin(θi)sin
(
θ̂i

)
γi+1 + cos

(
θ̂i

)
cos(θi) (74)

with (66) as the initial condition.
The inner product ,wTxi

n, can be written as:

wTxi
n = sin(φn)sin(θi)γi+1 + cos(φn)cos(θi) (75)

If we knew that γi+1 ≈ 1− 2−2nCW

2 we could use the same
arguments from the previous section to bound the posterior.
Using (73), γd−2 ≈ 1− 2−2nCW

2 and applying (74) in recursion,
we get:

lim
n→∞Pr

(∣∣∣θ̂i − θi

∣∣∣ ≤ 2−nI |θd−1
i+1 , xdn, ydn

)
≈ 1. (76)

E. Asymptotic Decay of Mutual Information

Finally, we will use the posteriors computed in the
previous sections to give an upper bound on the condi-
tional mutual information. The multiplication of the posteriors,
p(θi|θd−1

i+1 , xnT
i , ynT

i ), form a cone with probability approach-
ing 1 in x ∈ R

d. The unit vector ŵ is a vector in the center
of this cone. Using the results on p(θi|θd−1

i+1 , xnT
i , ynT

i ), (53)
and (54), we can compute upper bounds on the conditional
mutual information.

For the BAC,

P
(
Y = 1|x, xnT , ynT

)
= q

∫
1
(
xTw ≤ 0

)
�d

i=1p(θi|θ i−1, xnT
i , ynT

i )dθ

+ (1− p)

∫
1
(
xTw ≥ 0

)
�d

i=1p
(
θi|θ i−1, xnT

i , ynT
i

)
dθ

(77)

Therefore,

lim
n→∞H

(
Y|X, xn, yn) = ∫ 〈x,ŵ〉

|x| ≤−2−nCW
HB(q)p(x)dx

+
∫
〈x,ŵ〉
|x| >2−nCW

HB(1− p)p(x)dx+
∫
|〈x,ŵ〉|
|x| ≤2−nCW

HB
(
q
(
1− Fθ |xn,yn(x)

)+ (1− p)Fθ |xn,yn(x)
)
p(x)dx (78)

Similarly,

lim
n→∞H

(
Y|X, θ, xn, yn) ≥ ∫ 〈x,ŵ〉

|x| ≤−2−nCW
HB(q)p(x)dx

+
∫
〈x,ŵ〉
|x| >2−nCW

HB(1− p)p(x)dx

(79)

Therefore the desired mutual information can be upper
bounded by,

0 ≤ lim
n→∞ I

(
θ;Y|X, Xn, Yn) ≤ α2−

nT
d CW . (80)
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