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Universal Prediction

General Framework

@ Predict y; based on y!~! where y'™' = {y1, ¥, .... yi_1}
@ The model of ¥y is unknown

@ There are primarily two settings for this problem: individual
and stochastic

@ In the stochastic setting, the sequence is generated by
some source Py(y") from the hypotheses class.

Objective
Sequentially predict y; as if the statistical model was known!
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Stochastic Setting

@ Assume that there is a parameterized family of
distributions Py(y") (Hypotheses Class)

@ Nature chooses 6

4

Probabilistic Predictors

We concentrate on predictors of the form: 0 < q (-|y’—1) <1
where 3, q(yily"™") = 1

<

Cost Function - Log-Loss

Log-loss is a commonly used cost function in many applications
such as classification, data compression and more :

~Ing(yly'")
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Repeated Games - Regret & Redundancy

Regret (Comparing against the best)

n

Reg(6,y") = Z (In Py (%U’H) —-Ing (J/tU’H))
t=1

v

Expected Regret - Redundancy

@ Average over y (average case VS worst case)

R(q1, 92, ...,Qn,0) = Eyn{ﬁ’eg(e, y”)}

where g = q(y:ly"™")
@ Had 6 been known, then the logloss optimal predictor is

Po (}/tU’H)
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Minimax Redundancy

Objective

Rrini = min maxR(g1,9o,....,0n,0)
minimax G1.Gose..s on 0 q q q

Relaxed Objective

Rini = min maxE R(g4, 0, ...,0n,0
minimax G1.G2eenrGn 7(9) 7r(9){ (q1 aQ: an )}

y

Objective

@ Find the universal predictor that minimizes the redundancy
for the worst possible prior 7(0)

@ If the minimax redundancy grows sub-linearly, then
redundancy rate goes to zero - universal predictor performs
asymptotically as if & had been known in hindsight. |
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Capacity Redundancy Theorem

Capacity Redundancy Theorem (Gallager 79, Davisson &
Leon-Garcia 80 and Rybako 79)

Rminimax = max 1(6; y")
7(0)

Optimal Predictor - Mixture

qu™ = > 7 O)ps(y")
0

v

Sequential Form

qly™) = " wi®)Pe(yly™)
0

v
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On-Line Learning

Universal Prediction with Side Information

@ Consider on-line learning with log-loss

@ The goal is to predict the label (y;) of a feature (x;) based
on past features and associated labels (x!=1, ).

@ The features may be considered as side information
@ The hypotheses class: Py(y"|x")

@ The predictor is now defined as g (y,|yf‘1,x"‘,xt)

@ Redundancy and Regret are changed accordingly
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Hypotheses Class

Certain Form of Hypotheses Class

P (v'ix') =11t ()

where
Q = [90,91,92,...,9;(_1],9/ €0

and
Z; ={y,0 <i<tlx =}

Conditional Probability

P2 (vely* " x1) = P (ly™)

\
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On-Line Learning

Example - Horse Race with Side Information

@ The labels indicate the winning horse in each race - y;

@ The side information indicates the weather (sunny or rainy)
in each race - x; is binary

@ The probability of winning can change based on the
weather:

pe(y"1x") = pPEn (y§Hp%sm (y7)

Insight
@ Notice that there is no assumption on z(8) and in the
extreme Orajny = Hsunny

@ The sequential predictor is g(y;|y!~", x1).

@ Can something be gained by looking at all the labels and
not only on those in the same partition?
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Minimax Redundancy for On Line Learning

Minimax Redundancy

R(X") = Epgixm) pt(ynixn) (Zn: (|n P (yrl ZT) iIng (yfl yt—1,Xt)))
t=1

Objective

Rminimax(x™) = min max R(x")
g1,92,..., an 71'(Q|X")

where g; = q(y;ly'™", x!) is a universal predictor for y;.
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Related Results

Xie and Barron (2000)

@ Hypotheses class was modeled as a multiplication of
several i.i.d sources, determined by the side information.

@ Proposed predictor is a multiplication of mixtures
@ Achieves the asymptotic minimax regret.

\

Cover and Ordentlich (1996)

@ A closely related problem of universal portfolio with side
information was considered.

@ Portofolios are compared to the best state constant
rebalanced portfolios, where the side information
determines the state.

@ Optimal portfolio is a multiplication of mixtures of portfolios.
@ Attains asymptotic growth rate
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Related Results

Bottom Line

@ The above universal predictors with side information only
attain the asymptotic minimax regret

@ ltis unclear if these predictors are optimal in the non
asymptotic minimax redundancy sense

@ Does a Capacity Redundancy equivalence exists in these
scenarios?
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On-Line Learning

Main Question

Can the Capacity Redundancy theorem be
extended to on-line learning?
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On-Line Learning

Can the Capacity Redundancy theorem be
extended to on-line learning?

| A

Answer

Still open (probably cannot be extended in
general) but for a certain form of hypotheses
class it holds
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Capacity Redundancy Theorem for On-Line Learning

There is an equivalence between the minimax redundancy and
the sum of channel capacities.

K
Rminimax(x") = Z Cj(xn)
J=1

where,
Ci(x™) = ma /(0-; ‘,'x”)
j(X7) (Gjl)?(”) jyjl

the capacity of the channel between 6; and }_/]’? given x".
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Capacity Redundancy Theorem for On-Line Learning

Theorem

The minimax redundancy problem for the hypotheses class is
attained by the following on-line learner

arly™" X = 3" wiox)p™ (nly"")

Ox,
where,
ﬂ.(Qthxn)pOXt( t— 1)

W(th) = 0
S, (OxlxMpP (1)
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Proof Outline - Maximin Solution

It turns out that the maximin problem can be written as,

Rmaximin(Xn) = ﬂr(glax)%) ; 7T(Q|Xn)DKL (pQ (y”lx”) ||q* (y”lx”))
where,
g yIxm = > x@lxMp? (y"1X")
0
Thus,

Rmaximin(xn) = ”(Qf&%i(xn) / (Q. y”lxn = Xn)
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Proof Outline - Maximin Solution

Given x", we basically have K independent channels.
Therefore, the distribution 7(8|x") which maximizes the
corresponding mutual information induces independence,

(01x") = T (61"
Plugging in,

* _ K TvM AGi n
T = DI (6P (v7)

Thus,
g ("X =1 Y w(6)1xp (y7)
0

Then the maximin optimal universal predictor is in fact a
multiplication of mixtures
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Proof Outline - Maximin Solution

Also,
G ly™ xh = w(ox)p™ (YI|Z;1)

Ox;

where the weights w(6y,)

70 | X% ( tt 1 )
Eo, 765 6" (1)

W(QXt) =

Finally,

K
maxtm/n(x Z max l(gj y |X )

n
= 7(6j1x")
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Proof Outline - Upper Bound on Minimax

We propose to minimize over a smaller set, Q, of universal
predictors, each of the following form,

ay"Ix" =1 (y7)
where y7 = {y;,0 < i< nlx; = j}.
Plugging in,

e (1)

i‘qminimax(xn) = min max Ep(z’gp(n) In P
19 (ﬁn)

qy"1x"eQn(0]x")

where Rpminimax(X") < Rminimax(X")
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Proof Outline - Upper Bound on Minimax

After simple manipulations,

Riinimax(x"™) = N min  max Z 7(0j1x") Dir (pgf (Zjn) llq; (Zjn))

n | xn
03 71X 71X 7

Using minimax theorem K times we get,

K

Rminimax(xn) - =1 ﬂ?;jall))((”) / (9/; Z/n|xn)

with the same multiplication of mixtures predictor
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Summary

@ Capacity Redundancy theorem for on-line learning was
proven, under a certain form of hypotheses class

@ On-line universal predictor that can achieve the minimax
redundancy for an appropriate choice of prior distribution.

@ Moreover, the universal predictors proposed by Xie &
Barron and Cover & Ordentlich are in-fact special cases of
ou proposed predictor, which according to our proof
achieves the minimax redundancy even non asymptotically.
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