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Abstract—In this paper we consider the problem of on-
line learning in the stochastic setting under a certain form of
hypotheses class. We prove an equivalence between the minimax
redundancy and capacity of the channel between the class
parameters and the labels conditioned on the data features
(side information). Our proof extends Gallager’s Redundancy
Capacity theorem for universal prediction to on-line learning with
the considered form of hypotheses class. Moreover, this result
confirms the optimality of previous ad-hoc universal learners, or
universal predictors with side information, but more importantly,
extends these previous results to more general hypotheses classes.

I. INTRODUCTION

Universal prediction is the task of predicting the next sample
in a sequence, based only on previous samples with almost
no a-priori knowledge on the sequence. There are primarily
two settings for this problem. In the first, the sequence is
individual/arbitrary, i.e, it is not generated by any underlying
statistical model, but we fit to that sequence a model Pθ from a
certain hypotheses class. In the second, denoted stochastic, the
sequence is generated by some source Pθ from the hypotheses
class. Both settings have been studied thoroughly and the
reader is referred to an overview of this field in [1]. In this
paper we will concentrate on the stochastic setting but in the
on-line learning problem and on universal on-line learners
which do not know the value of θ.

As in any prediction problem, we wish to examine the
predictor’s accuracy based on some cost function. We will
concentrate on the log-loss which is a commonly used cost
function in many applications such as classification, data
compression and more. For a causal predictor b(·|yt−1) ≥
0,
∑
yt
b(yt|yt−1) = 1 of yt, where yt−1 = {y1, y2, ..., yt−1}

are the past labels, the log-loss for a specific yt is defined
as − log b(yt|yt−1). In the stochastic case, it was shown in
[1], that the predictor that minimizes the expected log-loss is
Pθ(yt|yt−1) for every θ. However, we are interested in uni-
versal predictors which do not have access to the parameter θ.
Therefore, the log-loss of the universal predictor is examined
in comparison to the log-loss of the optimal predictor which
knows θ. Basically, the objective now becomes the difference
between the cumulative log-loss of the universal predictor
and the cumulative log-loss of the optimal predictor and this
difference is called the regret.

Moreover, a common extension to the stochastic case is
where there is an unknown distribution π(θ) over the pa-
rameter space. The on-line predictor in this case wishes to
minimize the average behavior of the regret, without knowing
π(θ). We denote the average regret, which averages over the
data sequence and class parameters as the redundancy. One
interesting task is to find the universal predictor that minimizes
the redundancy for the worst possible prior π(θ) and compute
the value of the resulting minimax redundancy. If the minimax
redundancy grows sub-linearly with the data length n as it goes
to infinity, the redundancy rate goes to zero and effectively
the universal predictor performs asymptotically as well as the
optimal predictor, had θ (or more generally π(θ)) been known
in hindsight.

An important result in universal prediction is the Redun-
dancy Capacity Theorem. First introduced in [2] and then inde-
pendently in [3] and in [4], the theorem states that the minimax
redundancy is equal to the channel capacity between θ and
the data sequence measurements. Interestingly, it shows the
strong underlying connections between universal sequential
prediction and channel coding. This theorem also shows how
to construct the sequential universal predictor which achieves
the minimax redundancy. Moreover, in [5] it is shown that
the channel capacity is essentially a lower bound also in a
stronger sense, that is, for "most" sources in the class. This
result extends Rissanen’s lower bound for parametric families.

Consider now the on-line learning problem with log-loss as
discussed in [6], [7], [8], [9], [10] and [11]. In on-line learning,
the goal is to predict the label of a feature based on past fea-
tures and associated labels. The features may be considered as
side information of the labels that are causally available to the
predictor. Can the Capacity Redundancy theorem be extended
to on-line learning? The answer for arbitrary hypotheses
classes is unknown and there is no general derivation of a
universal minimax predictor. Nevertheless, some special cases
were considered, e.g., in [12], Sec. IX, where the hypotheses
class was modeled as a multiplication of several i.i.d sources,
where each source is determined by a different value of the
side information sample. In that work, a very specific universal
predictor was proposed and it was shown that it achieves the
asymptotic minimax regret. In [13], a closely related problem
of universal portfolio with side information was considered. In
that work, a universal portfolio was proposed, which attains



the optimal growth rate compared to the best state constant
rebalanced portfolios, where the side information determines
the state. This optimal portfolio is again a multiplication of
mixtures of portfolios. The universal predictors proposed in
[12] and [13] attain the asymptotic minimax regret but it is
unclear if these predictors are optimal in the non asymptotic
minimax redundancy sense and if a Capacity Redundancy
equivalence exists in these scenarios.

In this paper a Redundancy-Capacity theorem for the on-
line learning problem is proven that holds for a certain form
of hypotheses class. The optimal predictor that achieves the
minimax redundancy is also derived. As a special case, under
the hypotheses classes used in [12] and [13] our theorem
holds and the optimal universal predictor is a multiplication
of mixtures which coincides with the universal predictors
proposed in these works.

The hypotheses class defined in the next section basically
partitions the labels sequence to several sub-sequences based
on the output of some arbitrary finite state machine. Each sub-
sequence is controlled by a distribution which may be or not
different than the distributions of the other sub-sequences. An
example for this class can be a sequence of horse races in
which the labels indicate the winning horse in each race and
the side information indicates the weather (sunny or rainy)
in each race. It is reasonable to assume that the winning
probability for each horse can change conditioned on the
weather.

Even though the proposed hypotheses class is large and
can describe interesting problems, there are many important
hypotheses classes which cannot be described in this form.
These include any partitioning of the labels sequence which
depends on unknown parameters. For example, when the
feature is any real value in the interval IRd and is the input to a
Perceptron with unknown parameters which define the hyper-
planes that separate IRd. The Perceptron’s output partitions
the labels sequence to sub-sequences with different distribu-
tions. However, this partitioning is dependent on the unknown
parameters which are the same for each sub-sequence. This
prohibits the redundancy from factoring as in the model
proposed in this paper, and the theorem proven later does not
hold for that case. A very interesting research question would
be to find out whether a Redundancy Capacity theorem for
such hypotheses class exist.

II. PROBLEM DEFINITION AND MAIN RESULT

We consider a labels sequence, yn = {y1, y2, ..., yn}, and a
side information or features sequence, xn = {x1, x2, ..., xn},
where here for all t, xt ∈ {1, 2, ...,K} and yt ∈ {1, 2, ...,M}.
We are interested in on-line probabilistic prediction of the label
yt for the feature xt based on all past features and associated
labels, xt−1 and yt−1.

A. Hypotheses Class Definition

We define the hypotheses class, i.e, the family of conditional
distributions pθ (yt|xt), parameterized by the vector θ, which
generates the labels sequence, yt, for the features, xt. We

assume the conditional distribution of the labels given the
features, is a multiplication of up to K different distributions,
which are determined by the features: xt.

Specifically, the distributions which make up the hypotheses
class for this problem are of the following form,

pθ
(
yt|xt

)
= ΠK

j=1p
θj
(
yt
j

)
(1)

where θ = [θ0, θ1, θ2, ..., θK−1], θi ∈ Θ and yt
j

= {yi, 0 ≤
i ≤ t|xi = j}.

Basically, the features partition the labels sequence to K
different sub-sequences. We define Θ as the parameteriza-
tion space of the different distributions. For example, with
multivariate Gaussian distributions, each element in Θ would
contain the mean vector and covariance matrix of a respective
distribution. This model defines up to K different distributions,
each is parametrized by the corresponding θj . The hypotheses
class defined in [12] satisfies (1) and thus our novel result can
also be applied to their scenario.

We will now find the conditional distribution of yt,
pθ
(
yt|yt−1, xt

)
using the model in (1), Bayes law and total

probability,

pθ
(
yt|yt−1, xt

)
=

pθ (yt|xt)∑
yt
pθ (yt|xt)

(2)

Plugging (1) in (2)

pθ
(
yt|yt−1, xt

)
=

ΠK
j=1p

θj
(
yt
j

)
∑
yt

ΠK
j=1p

θj

(
yt
j

) (3)

Eliminating common factors,

pθ
(
yt|yt−1, xt

)
=

pθxt

(
yt
xt

)
∑
yt
pθxt

(
yt
xt

) (4)

Thus the conditional probability of yt based on all the
history is determined by its associated feature xt and the past
labels with the same feature value.

pθ
(
yt|yt−1, xt

)
= pθxt

(
yt|yt−1xt

)
(5)

B. Minimax Redundancy Definition

As discussed in the introduction, we are interested in the
regret which is defined as follows,

Reg(xn) =

n∑
t=1

(
ln pθ

(
yt|yt−1, xt

)
− ln q

(
yt|yt−1, xt

))
(6)

where q(yt|yt−1, xt) is an arbitrary (universal) conditional
probability.

The regret for a sequence yn with features xn is the
difference between the log-loss of the universal predictor and
the log-loss of the true distribution. We can now define the
redundancy for a specific xn, as the expectation of the regret



over yn and θ conditioned on xn. Therefore the redundancy
can be defined as follows,

R(xn) = Eyn,θ|xn

{
Reg(xn)

}
(7)

Plugging (1) and (5) into (6)

R(xn) =
∑
θ

π(θ|xn)
∑
yn

ΠK
j=1p

θj
(
yt
j

)
n∑
t=1

(
ln pθxt

(
yt|yt−1xt

)
− ln q

(
yt|yt−1, xt

)) (8)

The objective of on-line learning is to find a sequential uni-
versal predictor which solves the following minimax problem,

Rminimax(xn) = min
q1,q2,...,qn

max
π(θ|xn)

R(xn) (9)

where qt = q(yt|yt−1, xt) is a universal predictor for yt.
Note that the maximization is for π(θ|xn), i.e, there could

be a different distribution for the parameters vector for each
features sequence.

C. Main Result

Theorem 1: Capacity Redundancy Theorem for On-Line
Learning Under a Certain Hypotheses Class:

1) The minimax redundancy problem which was defined
in (9) for the hypotheses class of (1) is solved by the
following on-line learner

qt(yt|yt−1, xt) =
∑
θxt

w(θxt)p
θxt

(
yt|yt−1xt

)
where the weight w(θxt

) depends on the current feature
xt and takes into account only previous labels with the
same feature xt,

w(θxt
) =

π(θxt |xn)pθxt

(
yt−1
xt

)
∑
θxt

π(θxt
|xn)pθxt

(
yt−1
xt

)
2) There is an equivalence between the minimax redun-

dancy and the sum of channel capacities.

Rminimax(xn) =

K∑
j=1

Cj(x
n)

where,

Cj(x
n) = max

π(θj |xn)
I
(
θj ; y

n
j
|xn
)

which is the capacity of the channel between θj and yn
j

given xn.

D. Observations

The resulting predictor is a multiplication of K independent
mixture predictors for each sub sequence defined by the
feature. One might think that this result is quite straightfor-
ward, since the conditional distribution factorizes based on the
features. Therefore, there should not be any information gained
from observing the labels associated with other features.

However, the values θj are unknown a-priori and might be
correlated or in the extreme case, equal! Thus, in principle
there might be something to be gained by observing the sub
sequences associated with other features too. If two subse-
quences originate from sources with identical distributions,
then jointly processing them might improve the estimation
error of their properties.

Nevertheless, the theorem above states that in the minimax
redundancy sense, the optimal predictor processes each sub
sequence independently. This issue is the main focus of the
proof in the next section.

Finally, it is important to note that the following theorem
applies to any discrete valued function, f(xt) of the features
xt which partition the labels sequence.

III. PROOF OF THE CAPACITY REDUNDANCY THEOREM
WITH SIDE INFORMATION

The Capacity - Redundancy theorem in [2], shows the
equivalence between minimax redundancy and the capacity
(maximum mutual information) of the channel between θ and
the measurements yn. We wish to find a similar equivalence
for the case where the features are known sequentially. The
proof technique in [2] cannot be used in this case since it
will result in a different prior distribution for each time index.
Therefore, the proof will be as follows. First, we will find
the maximin redundancy solution. Then, we will propose a
predictor whose redundancy will upper bound the minimax
redundancy. Finally, we will show that this upper bound is
equal to the maximin redundancy and thus we will be able
to conclude that the proposed predictor achieves the minimax
redundancy and that the minimax redundancy equals the sum
of capacities.

A. Maximin Redundancy Solution

We can write the maximin problem,

Rmaximin(xn) = max
π(θ|xn)

min
q1,q2,q3,...,qn∑

θ

π(θ|xn)
∑
yn

ΠK
j=1p

θj
(
yn
j

)
n∑
t=1

(
ln pθxt

(
yt|yt−1xt

)
− ln q

(
yt|yt−1, xt

))
(10)



Since we minimize for each qt separately, then we can write,

Rmaximin(xn) = max
π(θ|xn)

n∑
t=1

min
qt

∑
θ

π(θ|xn)

∑
yn

ΠK
j=1p

θj
(
yn
j

)
(

ln pθxt

(
yt|yt−1xt

)
− ln q

(
yt|yt−1, xt

))
(11)

The conditional probability qt(yt|yt−1, xt) is a different
function for each yt−1 and xt. Therefore we can move the
summation on yn outside the min, except for the summation
on yt and find qt(yt|yt−1, xt) for a specific sequence yt−1.

Rmaximin(xn) = max
π(θ|xn)

n∑
t=1

∑
yt−1

min
qt

∑
yt

∑
θ

π(θ|xn)

Π{1≤j≤K|j 6=xt}p
θj
(
yt
j

)
pθxt

(
yt−1
xt

)
pθxt

(
yt|yt−1xt

)
(

ln pθxt

(
yt|yt−1xt

)
− ln q

(
yt|yt−1, xt

))
(12)

We can write the inner minimization problem using the
Kullback Leibler divergence, DKL(·||·),

q∗t = arg min
qt

∑
θ

π(θ|xn)ΠK
j=1p

θj
(
yt−1
j

)
DKL

(
pθxt

(
yt|yt−1xt

)
||q
(
yt|yt−1, xt

)) (13)

The optimal q∗t is thus,

q∗t (yt|yt−1, xt) =
∑
θ

αt(θ)p
θxt

(
yt|yt−1xt

)
(14)

where αt(θ) is defined as,

αt(θ) =
π(θ|xn)ΠK

j=1p
θj
(
yt−1
j

)
pθj
(
yt|yt−1j

)
∑
yt

∑
θ π(θ|xn)ΠK

j=1p
θj

(
yt−1
j

)
pθj
(
yt|yt−1j

)
(15)

which is equivalent to,

q∗t (yt|yt−1, xt) =

∑
θ π(θ|xn)pθ (yt|xt)∑

θ π(θ|xn)pθ (yt−1|xt−1)
(16)

Therefore, the universal predictor is basically a mixture of
all the distributions in the model,

q∗(yn|xn) =
∑
θ

π(θ|xn)pθ (yn|xn) (17)

Now, using (17), we can sum up the logarithms in (12),

Rmaximin(xn) = max
π(θ)

∑
θ

π(θ|xn)

DKL

(
pθ (yn|xn) ||q∗ (yn|xn)

) (18)

Substituting (17) in (18),

Rmaximin(xn) = max
π(θ|Xn=xn)

I (θ;Y n|Xn = xn) (19)

Note that given xn, we basically have K independent
channels. Therefore, the distribution π(θ|xn) which maximizes
(19) induces independence,

π(θ|xn) = ΠK
j=1π(θj |xn) (20)

We can now substitute (20) into (17) and get,

q∗(yn|xn) =
∑
θ

ΠK
j=1π(θj |xn)pθj

(
yn
j

)
(21)

Due to independence,

q∗(yn|xn) = ΠK
j=1

∑
θj

π(θj |xn)pθj
(
yn
j

)
(22)

Then the maximin optimal universal predictor is in fact a
multiplication of mixtures.

Also, plugging (20) into (16) gives us the maximin on-line
predictor:

q∗t (yt|yt−1, xt) =
∑
θxt

w(θxt
)pθxt

(
yt|yt−1xt

)
(23)

where the weights w(θxt
)

w(θxt) =
π(θxt |xn)pθxt

(
yt−1
xt

)
∑
θxt

π(θxt
|xn)pθxt

(
yt−1
xt

) (24)

If we also insert (20) into (19) we get,

Rmaximin(xn) =

K∑
j=1

max
π(θj |xn)

I
(
θj ; y

n
j
|xn
)

(25)

B. Upper Bound on Minimax Redundancy

In this section we will find an upper bound for the minimax
solution which will turn out to be equivalent to the max-
imin solution. We will then use the inequality Maximin ≤
Minimax to prove that this solution is minimax optimal.

The minimax problem is defined in (9) and we propose to
minimize over a smaller set of universal predictors, each of
the following form,

q(yn|xn) = ΠK
j=1qj

(
yn
j

)
(26)

where yn
j

= {yi, 0 ≤ i ≤ n|xi = j}.
We define the set Q as the set of all predictors which satisfy

(26). Plugging (26) in to (9) we get,

R̃minimax(xn) = min
q(yn|xn)∈Q

max
π(θ|xn)

∑
θ

π(θ|xn)

∑
yn

ΠK
j=1p

θj
(
yn
j

)
(

ln ΠK
j=1p

θj
(
yn
j

)
− ln ΠK

j=1qj

(
yj
n
)) (27)

where Rminimax(xn) ≤ R̃minimax(xn)



Since the distributions in the logarithms can be factored,

R̃minimax(xn) = min
q(yn|xn)∈Q

max
π(θ|xn)

∑
θ

π(θ|xn)

∑
yn

ΠK
j=1p

θj
(
yn
j

)
ln

ΠK
j=1

pθj
(
yn
j

)
qj

(
yn
j

)

(28)

Using the fact that the summation of logarithms equals the
logarithm of multiplication,

R̃minimax(xn) = min
q(yn|xn)∈Q

max
π(θ|xn)

∑
θ

π(θ|xn)
∑
yn

ΠK
j=1p

θj
(
yn
j

) K∑
j=1

ln
pθj
(
yn
j

)
qj

(
yn
j

)
 (29)

Each logarithmic term in the summation depends only on
yn
j

and θj , thus

R̃minimax(xn) = min
q(yn|xn)∈Q

max
π(θ|xn)

K∑
j=1

∑
θj

π(θj |xn)

∑
yn
j

pθj
(
yn
j

)
ln
pθj
(
yn
j

)
qj

(
yn
j

) (30)

We insert the maximization inside the summation and since
Q is a family of factored distributions, we can minimize for
each factor separately,

R̃minimax(xn) =

K∑
j=1

min
q(yn

j
|xn

j
)

max
π(θj |xn)

∑
θj

π(θj |xn)

DKL

(
pθj
(
yn
j

)
||qj

(
yn
j

)) (31)

The inner function
∑
θj
π(θj |xn)DKL

(
pθj
(
yn
j

)
||p
(
yn
j

))
is convex-concave and thus the maximin problem is equal to
the minimax problem for this specific term.

Therefore,

R̃minimax(xn) =

K∑
j=1

max
π(θj |xn)

min
q(yn

j
|xn

j
)

∑
θj

π(θj |xn)

DKL

(
pθj
(
yn
j

)
||q
(
yn
j

)) (32)

The universal predictor which minimizes the convex com-
bination of divergences is,

q
(
yn
j

)
=
∑
θj

π(θj |xn)pθj
(
yn
j

)
(33)

Inserting (26) and (33)

q(yn|xn) = ΠK
j=1

∑
θj

π(θj |xn)pθj
(
yn
j

)
(34)

Therefore (34) is equivalent to (22). Once we insert (33)
into (31) we get,

R̃minimax(xn) =

K∑
j=1

max
π(θj |xn)

I
(
θj ; y

n
j
|xn
)

(35)

However, (35) is equal to (25) and the upper bound on the
minimax is equal to the maximin solution, thus the maximin
solution is equal to the minimax solution.

IV. CONCLUSION

In this paper, a Capacity Redundancy theorem for on-line
learning was proven, under a hypotheses class which partitions
the labels sequence based on the features which are the output
of an arbitrary finite state machine. We have also developed
an on-line universal predictor that can achieve the minimax
redundancy for an appropriate choice of prior distribution. It
was shown that even if the sub sequences originated from iden-
tical distributions, there is nothing to be gained from jointly
processing them and the optimal predictor (in the minimax
redundancy sense) is composed of independent predictors for
each feature value.

Moreover, we have shown that the universal predictors
proposed in [12] and [13] are in-fact special cases of the
predictor in this paper, which according to our proof achieves
the minimax redundancy even non asymptotically.
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